Amelia-James commited on
Commit
b1523cd
·
verified ·
1 Parent(s): af12bd1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -13
app.py CHANGED
@@ -1,7 +1,8 @@
1
  import os
2
  from dotenv import load_dotenv
3
  import streamlit as st
4
- from groq import Groq
 
5
 
6
  # Load environment variables
7
  load_dotenv()
@@ -11,7 +12,7 @@ client = Groq(api_key=os.getenv("GROQ_API_KEY"))
11
 
12
  # Streamlit UI
13
  st.title("Voice Cloning Application")
14
- st.markdown("Clone your voice using Groq's Whisper Model for transcription.")
15
 
16
  # Upload audio file
17
  uploaded_file = st.file_uploader(
@@ -21,27 +22,45 @@ uploaded_file = st.file_uploader(
21
 
22
  if uploaded_file is not None:
23
  # Display uploaded audio
24
- st.audio(uploaded_file, format=f"audio/{uploaded_file.type.split('.')[-1]}")
 
25
  st.write("Transcription in progress...")
26
 
27
- # Read file contents as binary
28
- audio_bytes = uploaded_file.read()
 
 
29
 
 
30
  try:
31
- # Transcription request to the Whisper model
32
- transcription = client.audio.transcriptions.create(
33
- file=audio_bytes,
34
- model="whisper-large-v3-turbo",
35
- response_format="text", # Options: "text", "json"
36
  )
37
 
38
- # Display the transcription
 
39
  st.success("Transcription completed!")
40
- st.write("**Transcribed Text:**")
41
- st.text_area("Transcription", transcription, height=200)
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  except Exception as e:
44
  st.error(f"Error during transcription: {e}")
 
 
 
45
 
46
  # Footer
47
  st.markdown("Developed with ❤️ by Sanam Iftakhar")
 
1
  import os
2
  from dotenv import load_dotenv
3
  import streamlit as st
4
+ from groq import Groq # Ensure this is the correct import based on Groq's SDK
5
+ import tempfile
6
 
7
  # Load environment variables
8
  load_dotenv()
 
12
 
13
  # Streamlit UI
14
  st.title("Voice Cloning Application")
15
+ st.markdown("Clone your voice using Groq's Whisper Model and generate natural responses.")
16
 
17
  # Upload audio file
18
  uploaded_file = st.file_uploader(
 
22
 
23
  if uploaded_file is not None:
24
  # Display uploaded audio
25
+ audio_format = uploaded_file.type.split('/')[-1]
26
+ st.audio(uploaded_file, format=f"audio/{audio_format}")
27
  st.write("Transcription in progress...")
28
 
29
+ # Save the uploaded file to a temporary location
30
+ with tempfile.NamedTemporaryFile(delete=False, suffix='.' + audio_format) as temp_audio:
31
+ temp_audio.write(uploaded_file.read())
32
+ temp_audio_path = temp_audio.name
33
 
34
+ # Transcription Logic
35
  try:
36
+ # Replace the following with the correct transcription method provided by Groq
37
+ transcription_response = client.transcriptions.create(
38
+ file_path=temp_audio_path,
39
+ model="whisper-large-v3-turbo"
 
40
  )
41
 
42
+ # Extract the transcribed text from the response
43
+ transcribed_text = transcription_response['transcription'] # Adjust based on actual response structure
44
  st.success("Transcription completed!")
45
+ st.write("**Transcribed Text:**", transcribed_text)
46
+
47
+ # Placeholder for voice cloning (TTS integration can go here)
48
+ st.markdown("---")
49
+ st.subheader("Generate Speech from Transcription")
50
+ tts_input = st.text_area("Enter text to generate speech:", value=transcribed_text)
51
+
52
+ if st.button("Generate Speech"):
53
+ if tts_input:
54
+ # Simulate TTS functionality (placeholder for TTS model integration)
55
+ st.success("Generated speech successfully! (Placeholder)")
56
+ else:
57
+ st.warning("Please enter some text.")
58
 
59
  except Exception as e:
60
  st.error(f"Error during transcription: {e}")
61
+ finally:
62
+ # Clean up the temporary file
63
+ os.remove(temp_audio_path)
64
 
65
  # Footer
66
  st.markdown("Developed with ❤️ by Sanam Iftakhar")