Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
import streamlit as st
|
4 |
-
from groq import Groq
|
|
|
5 |
|
6 |
# Load environment variables
|
7 |
load_dotenv()
|
@@ -11,7 +12,7 @@ client = Groq(api_key=os.getenv("GROQ_API_KEY"))
|
|
11 |
|
12 |
# Streamlit UI
|
13 |
st.title("Voice Cloning Application")
|
14 |
-
st.markdown("Clone your voice using Groq's Whisper Model
|
15 |
|
16 |
# Upload audio file
|
17 |
uploaded_file = st.file_uploader(
|
@@ -21,27 +22,45 @@ uploaded_file = st.file_uploader(
|
|
21 |
|
22 |
if uploaded_file is not None:
|
23 |
# Display uploaded audio
|
24 |
-
|
|
|
25 |
st.write("Transcription in progress...")
|
26 |
|
27 |
-
#
|
28 |
-
|
|
|
|
|
29 |
|
|
|
30 |
try:
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
-
model="whisper-large-v3-turbo"
|
35 |
-
response_format="text", # Options: "text", "json"
|
36 |
)
|
37 |
|
38 |
-
#
|
|
|
39 |
st.success("Transcription completed!")
|
40 |
-
st.write("**Transcribed Text:**")
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
except Exception as e:
|
44 |
st.error(f"Error during transcription: {e}")
|
|
|
|
|
|
|
45 |
|
46 |
# Footer
|
47 |
st.markdown("Developed with ❤️ by Sanam Iftakhar")
|
|
|
1 |
import os
|
2 |
from dotenv import load_dotenv
|
3 |
import streamlit as st
|
4 |
+
from groq import Groq # Ensure this is the correct import based on Groq's SDK
|
5 |
+
import tempfile
|
6 |
|
7 |
# Load environment variables
|
8 |
load_dotenv()
|
|
|
12 |
|
13 |
# Streamlit UI
|
14 |
st.title("Voice Cloning Application")
|
15 |
+
st.markdown("Clone your voice using Groq's Whisper Model and generate natural responses.")
|
16 |
|
17 |
# Upload audio file
|
18 |
uploaded_file = st.file_uploader(
|
|
|
22 |
|
23 |
if uploaded_file is not None:
|
24 |
# Display uploaded audio
|
25 |
+
audio_format = uploaded_file.type.split('/')[-1]
|
26 |
+
st.audio(uploaded_file, format=f"audio/{audio_format}")
|
27 |
st.write("Transcription in progress...")
|
28 |
|
29 |
+
# Save the uploaded file to a temporary location
|
30 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.' + audio_format) as temp_audio:
|
31 |
+
temp_audio.write(uploaded_file.read())
|
32 |
+
temp_audio_path = temp_audio.name
|
33 |
|
34 |
+
# Transcription Logic
|
35 |
try:
|
36 |
+
# Replace the following with the correct transcription method provided by Groq
|
37 |
+
transcription_response = client.transcriptions.create(
|
38 |
+
file_path=temp_audio_path,
|
39 |
+
model="whisper-large-v3-turbo"
|
|
|
40 |
)
|
41 |
|
42 |
+
# Extract the transcribed text from the response
|
43 |
+
transcribed_text = transcription_response['transcription'] # Adjust based on actual response structure
|
44 |
st.success("Transcription completed!")
|
45 |
+
st.write("**Transcribed Text:**", transcribed_text)
|
46 |
+
|
47 |
+
# Placeholder for voice cloning (TTS integration can go here)
|
48 |
+
st.markdown("---")
|
49 |
+
st.subheader("Generate Speech from Transcription")
|
50 |
+
tts_input = st.text_area("Enter text to generate speech:", value=transcribed_text)
|
51 |
+
|
52 |
+
if st.button("Generate Speech"):
|
53 |
+
if tts_input:
|
54 |
+
# Simulate TTS functionality (placeholder for TTS model integration)
|
55 |
+
st.success("Generated speech successfully! (Placeholder)")
|
56 |
+
else:
|
57 |
+
st.warning("Please enter some text.")
|
58 |
|
59 |
except Exception as e:
|
60 |
st.error(f"Error during transcription: {e}")
|
61 |
+
finally:
|
62 |
+
# Clean up the temporary file
|
63 |
+
os.remove(temp_audio_path)
|
64 |
|
65 |
# Footer
|
66 |
st.markdown("Developed with ❤️ by Sanam Iftakhar")
|