Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
try:
|
| 2 |
+
from langchain_community.vectorstores import Chroma
|
| 3 |
+
except:
|
| 4 |
+
from langchain_community.vectorstores import Chroma
|
| 5 |
+
|
| 6 |
+
from langchain.chains import ConversationChain
|
| 7 |
+
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# Import the necessary libraries.
|
| 11 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 12 |
+
from langchain_groq import ChatGroq
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
import os
|
| 18 |
+
import requests # Or your Groq library
|
| 19 |
+
|
| 20 |
+
groq_api_key = os.environ.get("my_groq_api_key")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# Initialize a ChatGroq object with a temperature of 0 and the "mixtral-8x7b-32768" model.
|
| 26 |
+
llm = ChatGroq(temperature=0, model_name="llama3-70b-8192",api_key=groq_api_key)
|
| 27 |
+
|
| 28 |
+
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
| 29 |
+
|
| 30 |
+
embeddings = SentenceTransformerEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"trust_remote_code":True})
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
memory = ConversationBufferWindowMemory(
|
| 37 |
+
memory_key="history", k=3, return_only_outputs=True
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
query_text="what did alice say to rabbit"
|
| 46 |
+
|
| 47 |
+
# Prepare the DB.
|
| 48 |
+
#embedding_function = OpenAIEmbeddings() # main
|
| 49 |
+
|
| 50 |
+
CHROMA_PATH = "chroma8"
|
| 51 |
+
# call the chroma generated in a directory
|
| 52 |
+
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embeddings)
|
| 53 |
+
|
| 54 |
+
# Search the DB for similar documents to the query.
|
| 55 |
+
results = db.similarity_search_with_relevance_scores(query_text, k=2)
|
| 56 |
+
if len(results) == 0 or results[0][1] < 0.5:
|
| 57 |
+
print(f"Unable to find matching results.")
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
from langchain import PromptTemplate
|
| 68 |
+
query_text = "when did alice see mad hatter"
|
| 69 |
+
|
| 70 |
+
results = db.similarity_search_with_relevance_scores(query_text, k=3)
|
| 71 |
+
if len(results) == 0 or results[0][1] < 0.5:
|
| 72 |
+
print(f"Unable to find matching results.")
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results ])
|
| 76 |
+
|
| 77 |
+
template = """
|
| 78 |
+
The following is a conversation between a human an AI. Answer question based only on the conversation.
|
| 79 |
+
|
| 80 |
+
Current conversation:
|
| 81 |
+
{history}
|
| 82 |
+
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
s="""
|
| 88 |
+
|
| 89 |
+
\n question: {input}
|
| 90 |
+
|
| 91 |
+
\n answer:""".strip()
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+'\n'+s)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
chain = ConversationChain(
|
| 100 |
+
llm=llm,
|
| 101 |
+
|
| 102 |
+
prompt=prompt,
|
| 103 |
+
memory=memory,
|
| 104 |
+
verbose=True,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
# Generate a response from the Llama model
|
| 111 |
+
def get_llama_response(message: str, history: list) -> str:
|
| 112 |
+
"""
|
| 113 |
+
Generates a conversational response from the Llama model.
|
| 114 |
+
|
| 115 |
+
Parameters:
|
| 116 |
+
message (str): User's input message.
|
| 117 |
+
history (list): Past conversation history.
|
| 118 |
+
|
| 119 |
+
Returns:
|
| 120 |
+
str: Generated response from the Llama model.
|
| 121 |
+
"""
|
| 122 |
+
query_text =message
|
| 123 |
+
|
| 124 |
+
results = db.similarity_search_with_relevance_scores(query_text, k=2)
|
| 125 |
+
if len(results) == 0 or results[0][1] < 0.5:
|
| 126 |
+
print(f"Unable to find matching results.")
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results ])
|
| 130 |
+
|
| 131 |
+
template = """
|
| 132 |
+
The following is a conversation between a human an AI. Answer question based only on the conversation.
|
| 133 |
+
|
| 134 |
+
Current conversation:
|
| 135 |
+
{history}
|
| 136 |
+
|
| 137 |
+
"""
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
s="""
|
| 142 |
+
|
| 143 |
+
\n question: {input}
|
| 144 |
+
|
| 145 |
+
\n answer:""".strip()
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
prompt = PromptTemplate(input_variables=["history", "input"], template=template+context_text+'\n'+s)
|
| 149 |
+
|
| 150 |
+
#print(template)
|
| 151 |
+
chain.prompt=prompt
|
| 152 |
+
res = chain.predict(input=query_text)
|
| 153 |
+
return res
|
| 154 |
+
#return response.strip()
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
import gradio as gr
|
| 159 |
+
iface = gr.Interface(fn=get_llama_response, inputs=gr.Textbox(),
|
| 160 |
+
outputs="textbox")
|
| 161 |
+
iface.launch(share=True)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|