Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,12 @@ from langchain.llms import CTransformers
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from transformers import pipeline
|
7 |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
8 |
-
from sentence_transformers import SentenceTransformer
|
9 |
from sklearn.cluster import KMeans
|
10 |
import nltk
|
11 |
nltk.download('punkt')
|
12 |
from nltk.tokenize import word_tokenize
|
|
|
13 |
import numpy as np
|
14 |
import scipy.spatial
|
15 |
import csv
|
@@ -59,11 +60,6 @@ def calculate_similarity(word, other_words, model, threshold=0.5):
|
|
59 |
return None, None
|
60 |
|
61 |
|
62 |
-
from sentence_transformers import SentenceTransformer, util
|
63 |
-
import nltk
|
64 |
-
nltk.download('punkt') # Ensure you have the punkt tokenizer models
|
65 |
-
from nltk import tokenize
|
66 |
-
|
67 |
def highlight_similar_paragraphs_with_colors(paragraphs, similarity_threshold=0.25):
|
68 |
# Load a pre-trained sentence-transformer model
|
69 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from transformers import pipeline
|
7 |
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
8 |
+
from sentence_transformers import SentenceTransformer, util
|
9 |
from sklearn.cluster import KMeans
|
10 |
import nltk
|
11 |
nltk.download('punkt')
|
12 |
from nltk.tokenize import word_tokenize
|
13 |
+
from nltk import tokenize
|
14 |
import numpy as np
|
15 |
import scipy.spatial
|
16 |
import csv
|
|
|
60 |
return None, None
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
63 |
def highlight_similar_paragraphs_with_colors(paragraphs, similarity_threshold=0.25):
|
64 |
# Load a pre-trained sentence-transformer model
|
65 |
model = SentenceTransformer('all-MiniLM-L6-v2')
|