Amiruzzaman commited on
Commit
8a66ec4
·
verified ·
1 Parent(s): 70246fd

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +42 -0
  2. model.h5 +3 -0
  3. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import numpy as np
4
+ import tensorflow as tf
5
+ from tensorflow.keras.preprocessing import image
6
+
7
+ # Function to preprocess the uploaded image
8
+ def preprocess_uploaded_image(uploaded_image, target_size):
9
+ img = Image.open(uploaded_image)
10
+ img = img.resize(target_size)
11
+ img_array = image.img_to_array(img)
12
+ img_array = np.expand_dims(img_array, axis=0)
13
+ return img_array
14
+
15
+ # Function to load the model and make predictions
16
+ def predict_image_class(model_path, uploaded_image, target_size):
17
+ loaded_model = tf.keras.models.load_model(model_path)
18
+ img = preprocess_uploaded_image(uploaded_image, target_size)
19
+ prediction = loaded_model.predict(img)
20
+ class_idx = np.argmax(prediction)
21
+ return class_idx
22
+
23
+ def main():
24
+ st.title("Heart Disease Image Classifier")
25
+ uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
26
+
27
+ if uploaded_image is not None:
28
+ st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
29
+ st.write("")
30
+ with st.spinner("Classifying..."):
31
+ # Classify the uploaded image
32
+ class_idx = predict_image_class("model.h5", uploaded_image, target_size=(224, 224))
33
+
34
+ if class_idx == 0:
35
+ st.write("The patient doesn't have heart disease")
36
+ else:
37
+ st.write("The patient has heart disease")
38
+
39
+
40
+ # Run the Streamlit app
41
+ if __name__ == "__main__":
42
+ main()
model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dd424537b91fcf72a6272ec4b4007e045a9076cd863f3c8dbea448caf72e222
3
+ size 777579104
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ streamlit
2
+ pillow
3
+ numpy
4
+ tensorflow