Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,52 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import numpy as np
|
3 |
-
import
|
4 |
-
|
5 |
-
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
with open('
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
import pickle
|
5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
+
|
7 |
+
# Load the model and tokenizer
|
8 |
+
model = load_model('sentiment_model.h5')
|
9 |
+
with open('tokenizer.pkl', 'rb') as file:
|
10 |
+
tokenizer = pickle.load(file)
|
11 |
+
with open('label_map.pkl', 'rb') as file:
|
12 |
+
label_map = pickle.load(file)
|
13 |
+
|
14 |
+
def preprocess_text(text, tokenizer, max_len):
|
15 |
+
sequence = tokenizer.texts_to_sequences([text])
|
16 |
+
padded_sequence = pad_sequences(sequence, maxlen=max_len)
|
17 |
+
return padded_sequence
|
18 |
+
|
19 |
+
def predict_sentiment(text, model, tokenizer, max_len, label_map):
|
20 |
+
processed_text = preprocess_text(text, tokenizer, max_len)
|
21 |
+
prediction = model.predict(processed_text)
|
22 |
+
predicted_class = np.argmax(prediction, axis=1)[0]
|
23 |
+
predicted_label = label_map[predicted_class]
|
24 |
+
return predicted_label
|
25 |
+
|
26 |
+
# Streamlit app
|
27 |
+
def main():
|
28 |
+
st.title("Sentiment Analysis")
|
29 |
+
st.write("Enter a text to predict its sentiment.")
|
30 |
+
|
31 |
+
# Input text from user
|
32 |
+
input_text = st.text_area("Input Text", "Type your text here...")
|
33 |
+
|
34 |
+
if st.button("Predict Sentiment"):
|
35 |
+
if input_text:
|
36 |
+
max_len = 100 # Set this to the max length used during training
|
37 |
+
sentiment = predict_sentiment(input_text, model, tokenizer, max_len, label_map)
|
38 |
+
st.write(f"The predicted sentiment for the text is: **{sentiment}**")
|
39 |
+
else:
|
40 |
+
st.write("Please enter some text to analyze.")
|
41 |
+
|
42 |
+
st.header("Sample Texts")
|
43 |
+
st.write("<span style='color:green; font-weight:bold'>Positive:</span> Going to finish up Borderlands 2 today.", unsafe_allow_html=True)
|
44 |
+
st.write("<span style='color:yellow; font-weight:bold'>Neutral:</span> Check out this epic streamer", unsafe_allow_html=True)
|
45 |
+
st.write("<span style='color:red; font-weight:bold'>Negative:</span> The biggest disappointment of my life came a year ago.", unsafe_allow_html=True)
|
46 |
+
st.write("<span style='color:cyan; font-weight:bold'>Irrelevant:</span> Stupid 19-year-olds who write bad poetry need to get away from the computer and talk to real people who don't believe in vampires.", unsafe_allow_html=True)
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
main()
|