Amitontheweb's picture
Update app.py
bf0c3af verified
raw
history blame
16.1 kB
# Gradio Params Playground
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import gradio as gr
# Load default model as GPT2
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
# Define functions
global chosen_strategy
def generate(input_text, number_steps, number_beams, number_beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected):
chosen_strategy = strategy_selected
inputs = tokenizer(input_text, return_tensors="pt")
if chosen_strategy == "Sampling":
top_p_flag = top_p_box
top_k_flag = top_k_box
outputs = model.generate(
**inputs,
max_new_tokens=number_steps,
return_dict_in_generate=False,
temperature=temperature,
top_p=top_p if top_p_flag else None,
top_k=top_k if top_k_flag else None,
no_repeat_ngram_size = no_repeat_ngram_size,
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
output_scores=False,
do_sample=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
elif chosen_strategy == "Beam Search":
beam_temp_flag = beam_temperature
early_stop_flag = early_stopping
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=number_steps,
num_beams=number_beams,
num_return_sequences=min(num_return_sequences, number_beams),
return_dict_in_generate=False,
length_penalty=length_penalty,
temperature=temperature if beam_temp_flag else None,
no_repeat_ngram_size = no_repeat_ngram_size,
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
early_stopping = True if early_stop_flag else False,
output_scores=False,
do_sample=True if beam_temp_flag else False
)
beam_options_list = []
for i, beam_output in enumerate(outputs):
beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True))
options = "\n\n - Option - \n".join(beam_options_list)
return ("Beam Search Generation" + "\n" + "-" * 10 + "\n" + options)
#print ("Option {}: {}\n".format(i, tokenizer.decode(beam_output, skip_special_tokens=True)))
elif chosen_strategy == "Diversity Beam Search":
early_stop_flag = early_stopping
if number_beam_groups == 1:
number_beam_groups = 2
if number_beam_groups > number_beams:
number_beams = number_beam_groups
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(
**inputs,
max_new_tokens=number_steps,
num_beams=number_beams,
num_beam_groups=number_beam_groups,
diversity_penalty=float(diversity_penalty),
num_return_sequences=min(num_return_sequences, number_beams),
return_dict_in_generate=False,
length_penalty=length_penalty,
no_repeat_ngram_size = no_repeat_ngram_size,
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
early_stopping = True if early_stop_flag else False,
output_scores=False,
)
beam_options_list = []
for i, beam_output in enumerate(outputs):
beam_options_list.append (tokenizer.decode(beam_output, skip_special_tokens=True))
options = "\n\n ------ Option ------- \n".join(beam_options_list)
return ("Diversity Beam Search Generation" + "\n" + "-" * 10 + "\n" + options)
elif chosen_strategy == "Contrastive":
top_k_flag = top_k_box
outputs = model.generate(
**inputs,
max_new_tokens=number_steps,
return_dict_in_generate=False,
temperature=temperature,
penalty_alpha=penalty_alpha,
top_k=top_k if top_k_flag else None,
no_repeat_ngram_size = no_repeat_ngram_size,
repetition_penalty = repetition_penalty if (repetition_penalty > 0) else None,
output_scores=False,
do_sample=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
#--------ON SELECTING MODEL------------------------
def load_model(model_selected):
if model_selected == "gpt2":
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id)
#print (model_selected + " loaded")
if model_selected == "Gemma 2":
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b")
#--------ON SELECT NO. OF RETURN SEQUENCES----------
def change_num_return_sequences(n_beams, num_return_sequences):
if (num_return_sequences > n_beams):
return gr.Slider(
label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=n_beams)
return gr.Slider (
label="Number of sequences", minimum=1, maximum=n_beams, step=1, value=num_return_sequences)
#--------ON CHANGING NO OF BEAMS------------------
def popualate_beam_groups (n_beams):
global chosen_strategy
no_of_beams = n_beams
No_beam_group_list = [] #list for beam group selection
for y in range (2, no_of_beams+1):
if no_of_beams % y == 0: #perfectly divisible
No_beam_group_list.append (y) #add to list, use as list for beam group selection
if chosen_strategy == "Diversity Beam Search":
return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=True),
num_return_sequences: gr.Slider(maximum=no_of_beams)
}
if chosen_strategy == "Beam Search":
return {beam_groups: gr.Dropdown(No_beam_group_list, value=max(No_beam_group_list), label="Beam groups", info="Divide beams into equal groups", visible=False),
num_return_sequences: gr.Slider(maximum=no_of_beams)
}
#-----------ON SELECTING TOP P / TOP K--------------
def top_p_switch(input_p_box):
value = input_p_box
if value:
return {top_p: gr.Slider(visible = True)}
else:
return {top_p: gr.Slider(visible = False)}
def top_k_switch(input_k_box):
value = input_k_box
if value:
return {top_k: gr.Slider(visible = True)}
else:
return {top_k: gr.Slider(visible = False)}
#-----------ON SELECTING BEAM TEMPERATURE--------------
def beam_temp_switch (input):
value = input
if value:
return {temperature: gr.Slider (visible=True)}
else:
return {temperature: gr.Slider (visible=False)}
#-----------ON COOOSING STRATEGY: HIDE/DISPLAY PARAMS -----------
def select_strategy(input_strategy):
global chosen_strategy
chosen_strategy = input_strategy
if chosen_strategy == "Beam Search":
return {n_beams: gr.Slider(visible=True),
num_return_sequences: gr.Slider(visible=True),
beam_temperature: gr.Checkbox(visible=True),
early_stopping: gr.Checkbox(visible=True),
length_penalty: gr.Slider(visible=True),
beam_groups: gr.Dropdown(visible=False),
diversity_penalty: gr.Slider(visible=False),
temperature: gr.Slider (visible=False),
top_k: gr.Slider(visible=False),
top_p: gr.Slider(visible=False),
top_k_box: gr.Checkbox(visible = False),
top_p_box: gr.Checkbox(visible = False),
penalty_alpha: gr.Slider (visible=False)
}
if chosen_strategy == "Sampling":
if top_k_box == True:
{top_k: gr.Slider(visible = True)}
if top_p_box == True:
{top_p: gr.Slider(visible = True)}
return {
temperature: gr.Slider (visible=True),
top_p: gr.Slider(visible=False),
top_k: gr.Slider(visible=False),
n_beams: gr.Slider(visible=False),
beam_groups: gr.Dropdown(visible=False),
diversity_penalty: gr.Slider(visible=False),
num_return_sequences: gr.Slider(visible=False),
beam_temperature: gr.Checkbox(visible=False),
early_stopping: gr.Checkbox(visible=False),
length_penalty: gr.Slider(visible=False),
top_p_box: gr.Checkbox(visible = True, value=False),
top_k_box: gr.Checkbox(visible = True, value=False),
penalty_alpha: gr.Slider (visible=False)
}
if chosen_strategy == "Diversity Beam Search":
return {n_beams: gr.Slider(visible=True),
beam_groups: gr.Dropdown(visible=True),
diversity_penalty: gr.Slider(visible=True),
num_return_sequences: gr.Slider(visible=True),
length_penalty: gr.Slider(visible=True),
beam_temperature: gr.Checkbox(visible=False),
early_stopping: gr.Checkbox(visible=True),
temperature: gr.Slider (visible=False),
top_k: gr.Slider(visible=False),
top_p: gr.Slider(visible=False),
top_k_box: gr.Checkbox(visible = False),
top_p_box: gr.Checkbox(visible = False),
penalty_alpha: gr.Slider (visible=False),
}
if chosen_strategy == "Contrastive":
if top_k_box:
{top_k: gr.Slider(visible = True)}
return {
temperature: gr.Slider (visible=True),
penalty_alpha: gr.Slider (visible=True),
top_p: gr.Slider(visible=False),
#top_k: gr.Slider(visible = True) if top_k_box
#top_k: gr.Slider(visible=False),
n_beams: gr.Slider(visible=False),
beam_groups: gr.Dropdown(visible=False),
diversity_penalty: gr.Slider(visible=False),
num_return_sequences: gr.Slider(visible=False),
beam_temperature: gr.Checkbox(visible=False),
early_stopping: gr.Checkbox(visible=False),
length_penalty: gr.Slider(visible=False),
top_p_box: gr.Checkbox(visible = False),
top_k_box: gr.Checkbox(visible = True)
}
def clear():
print ("")
#------------------MAIN BLOCKS DISPLAY---------------
with gr.Blocks() as demo:
No_beam_group_list = [2]
text = gr.Textbox(
label="Prompt",
value="It's a rainy day today",
)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2", pad_token_id=tokenizer.eos_token_id, cache_dir=cache_dir).to(torch_device)
with gr.Row():
with gr.Column (scale=0, min_width=200) as Models_Strategy:
model_selected = gr.Radio (["gpt2", "Gemma 2"], label="ML Model", value="gpt2")
strategy_selected = gr.Radio (["Sampling", "Beam Search", "Diversity Beam Search","Contrastive"], label="Search strategy", value = "Sampling", interactive=True)
with gr.Column (scale=0, min_width=250) as Beam_Params:
n_steps = gr.Slider(
label="Number of steps/tokens", minimum=1, maximum=100, step=1, value=20
)
n_beams = gr.Slider(
label="Number of beams", minimum=2, maximum=100, step=1, value=4, visible=False
)
#----------------Dropdown-----------------
beam_groups = gr.Dropdown(No_beam_group_list, value=2, label="Beam groups", info="Divide beams into equal groups", visible=False
)
diversity_penalty = gr.Slider(
label="Group diversity penalty", minimum=0.1, maximum=2, step=0.1, value=0.8, visible=False
)
num_return_sequences = gr.Slider(
label="Number of return sequences", minimum=1, maximum=3, step=1, value=2, visible=False
)
temperature = gr.Slider(
label="Temperature", minimum=0.1, maximum=3, step=0.1, value=0.6, visible = True
)
top_k = gr.Slider(
label="Top_K", minimum=1, maximum=50, step=1, value=5, visible = False
)
top_p = gr.Slider(
label="Top_P", minimum=0.1, maximum=3, step=0.1, value=0.3, visible = False
)
penalty_alpha = gr.Slider(
label="Contrastive penalty α", minimum=0.1, maximum=2, step=0.1, value=0.6, visible=False
)
top_p_box = gr.Checkbox(label="Top P", info="Turn on Top P", visible = True, interactive=True)
top_k_box = gr.Checkbox(label="Top K", info="Turn on Top K", visible = True, interactive=True)
early_stopping = gr.Checkbox(label="Early stopping", info="Stop with heuristically chosen good result", visible = False, interactive=True)
beam_temperature = gr.Checkbox(label="Beam Temperature", info="Turn on sampling", visible = False, interactive=True)
with gr.Column(scale=0, min_width=200):
length_penalty = gr.Slider(
label="Length penalty", minimum=-3, maximum=3, step=0.5, value=0, info="'+' more, '-' less no. of words", visible = False, interactive=True
)
no_repeat_ngram_size = gr.Slider(
label="No repeat n-gram phrase size", minimum=0, maximum=8, step=1, value=4, info="Not to repeat 'n' words"
)
repetition_penalty = gr.Slider(
label="Repetition penalty", minimum=0, maximum=3, step=1, value=float(0), info="Prior context based penalty for unique text"
)
#----------ON SELECTING/CHANGING: RETURN SEEQUENCES/NO OF BEAMS/BEAM GROUPS/TEMPERATURE--------
model_selected.change(
fn=load_model, inputs=[model_selected], outputs=[]
)
#num_return_sequences.change(
#fn=change_num_return_sequences, inputs=[n_beams,num_return_sequences], outputs=num_return_sequences
#)
n_beams.change(
fn=popualate_beam_groups, inputs=[n_beams], outputs=[beam_groups,num_return_sequences]
)
strategy_selected.change(fn=select_strategy, inputs=strategy_selected, outputs=[n_beams,beam_groups,length_penalty,diversity_penalty,num_return_sequences,temperature,early_stopping,beam_temperature,penalty_alpha,top_p,top_k,top_p_box,top_k_box])
beam_temperature.change (fn=beam_temp_switch, inputs=beam_temperature, outputs=temperature)
top_p_box.change (fn=top_p_switch, inputs=top_p_box, outputs=top_p)
top_k_box.change (fn=top_k_switch, inputs=top_k_box, outputs=top_k)
#-------------GENERATE BUTTON-------------------
button = gr.Button("Generate")
out_markdown = gr.Textbox()
button.click(
fn = generate,
inputs=[text, n_steps, n_beams, beam_groups, diversity_penalty, length_penalty, num_return_sequences, temperature, no_repeat_ngram_size, repetition_penalty, early_stopping, beam_temperature, top_p, top_k,penalty_alpha,top_p_box,top_k_box,strategy_selected,model_selected],
outputs=[out_markdown]
)
cleared = gr.Button ("Clear")
cleared.click (fn=clear, inputs=[], outputs=[out_markdown])
demo.launch()