Delete app.py
Browse files
app.py
DELETED
@@ -1,215 +0,0 @@
|
|
1 |
-
|
2 |
-
import pandas as pd
|
3 |
-
import seaborn as sns
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
from sklearn.model_selection import train_test_split
|
6 |
-
import mlflow
|
7 |
-
import mlflow.sklearn
|
8 |
-
from sklearn.linear_model import LinearRegression
|
9 |
-
from sklearn.tree import DecisionTreeRegressor
|
10 |
-
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
|
11 |
-
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
12 |
-
|
13 |
-
|
14 |
-
from sklearn.linear_model import LinearRegression
|
15 |
-
from sklearn.tree import DecisionTreeRegressor
|
16 |
-
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
|
17 |
-
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
18 |
-
from sklearn.model_selection import GridSearchCV
|
19 |
-
import mlflow
|
20 |
-
import mlflow.sklearn
|
21 |
-
import joblib
|
22 |
-
|
23 |
-
# Load dataset
|
24 |
-
df = pd.read_csv('ds_salaries.csv')
|
25 |
-
|
26 |
-
# EDA
|
27 |
-
print(df.head())
|
28 |
-
print(df.info())
|
29 |
-
print(df.describe())
|
30 |
-
|
31 |
-
# Visualizations
|
32 |
-
sns.pairplot(df)
|
33 |
-
plt.show()
|
34 |
-
|
35 |
-
# Handle missing values
|
36 |
-
# Fill numeric columns with mean and categorical columns with mode
|
37 |
-
numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns
|
38 |
-
categorical_cols = df.select_dtypes(include=['object']).columns
|
39 |
-
|
40 |
-
df[numeric_cols] = df[numeric_cols].apply(lambda x: x.fillna(x.mean()))
|
41 |
-
df[categorical_cols] = df[categorical_cols].apply(lambda x: x.fillna(x.mode()[0]))
|
42 |
-
|
43 |
-
# Drop the salary_currency column as it's not needed for prediction
|
44 |
-
df = df.drop(columns=['salary_currency'])
|
45 |
-
|
46 |
-
# Encode categorical variables
|
47 |
-
categorical_columns = ['experience_level', 'employment_type', 'job_title', 'employee_residence', 'company_location', 'company_size']
|
48 |
-
df = pd.get_dummies(df, columns=categorical_columns, drop_first=True)
|
49 |
-
|
50 |
-
# Define features and target variable
|
51 |
-
X = df.drop(['salary', 'salary_in_usd'], axis=1)
|
52 |
-
y = df['salary_in_usd']
|
53 |
-
|
54 |
-
# Split the data
|
55 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
56 |
-
|
57 |
-
# Model training and experiment tracking with MLflow
|
58 |
-
models = {
|
59 |
-
'Linear Regression': LinearRegression(),
|
60 |
-
'Decision Tree': DecisionTreeRegressor(),
|
61 |
-
'Random Forest': RandomForestRegressor(),
|
62 |
-
'Gradient Boosting': GradientBoostingRegressor()
|
63 |
-
}
|
64 |
-
|
65 |
-
mlflow.set_experiment('Data Science Salaries Prediction')
|
66 |
-
|
67 |
-
for model_name, model in models.items():
|
68 |
-
with mlflow.start_run(run_name=model_name):
|
69 |
-
model.fit(X_train, y_train)
|
70 |
-
y_pred = model.predict(X_test)
|
71 |
-
|
72 |
-
# Log model
|
73 |
-
mlflow.sklearn.log_model(model, model_name)
|
74 |
-
|
75 |
-
# Log metrics
|
76 |
-
mlflow.log_metric('RMSE', mean_squared_error(y_test, y_pred, squared=False))
|
77 |
-
mlflow.log_metric('MAE', mean_absolute_error(y_test, y_pred))
|
78 |
-
mlflow.log_metric('R2', r2_score(y_test, y_pred))
|
79 |
-
|
80 |
-
# Hyperparameter tuning for the best model (e.g., Random Forest)
|
81 |
-
from sklearn.model_selection import GridSearchCV
|
82 |
-
|
83 |
-
param_grid = {
|
84 |
-
'n_estimators': [100, 200, 300],
|
85 |
-
'max_depth': [None, 10, 20, 30]
|
86 |
-
}
|
87 |
-
|
88 |
-
grid_search = GridSearchCV(RandomForestRegressor(), param_grid, cv=3, scoring='r2')
|
89 |
-
grid_search.fit(X_train, y_train)
|
90 |
-
|
91 |
-
# Log the best model and parameters
|
92 |
-
with mlflow.start_run(run_name='Optimized Random Forest'):
|
93 |
-
mlflow.sklearn.log_model(grid_search.best_estimator_, 'Random Forest')
|
94 |
-
mlflow.log_params(grid_search.best_params_)
|
95 |
-
mlflow.log_metric('Best R2', grid_search.best_score_)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
# Model training and experiment tracking with MLflow
|
111 |
-
models = {
|
112 |
-
'Linear Regression': LinearRegression(),
|
113 |
-
'Decision Tree': DecisionTreeRegressor(),
|
114 |
-
'Random Forest': RandomForestRegressor(),
|
115 |
-
'Gradient Boosting': GradientBoostingRegressor()
|
116 |
-
}
|
117 |
-
|
118 |
-
mlflow.set_experiment('Data Science Salaries Prediction')
|
119 |
-
|
120 |
-
for model_name, model in models.items():
|
121 |
-
with mlflow.start_run(run_name=model_name):
|
122 |
-
model.fit(X_train, y_train)
|
123 |
-
y_pred = model.predict(X_test)
|
124 |
-
|
125 |
-
# Log model
|
126 |
-
mlflow.sklearn.log_model(model, model_name)
|
127 |
-
|
128 |
-
# Log metrics
|
129 |
-
mlflow.log_metric('RMSE', mean_squared_error(y_test, y_pred, squared=False))
|
130 |
-
mlflow.log_metric('MAE', mean_absolute_error(y_test, y_pred))
|
131 |
-
mlflow.log_metric('R2', r2_score(y_test, y_pred))
|
132 |
-
|
133 |
-
# Hyperparameter tuning for the best model (e.g., Random Forest)
|
134 |
-
param_grid = {
|
135 |
-
'n_estimators': [100, 200, 300],
|
136 |
-
'max_depth': [None, 10, 20, 30]
|
137 |
-
}
|
138 |
-
|
139 |
-
grid_search = GridSearchCV(RandomForestRegressor(), param_grid, cv=3, scoring='r2')
|
140 |
-
grid_search.fit(X_train, y_train)
|
141 |
-
|
142 |
-
# Log the best model and parameters
|
143 |
-
with mlflow.start_run(run_name='Optimized Random Forest'):
|
144 |
-
mlflow.sklearn.log_model(grid_search.best_estimator_, 'Random Forest')
|
145 |
-
mlflow.log_params(grid_search.best_params_)
|
146 |
-
mlflow.log_metric('Best R2', grid_search.best_score_)
|
147 |
-
|
148 |
-
# Save the best model
|
149 |
-
joblib.dump(grid_search.best_estimator_, 'best_model.pkl')
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
import streamlit as st
|
169 |
-
import pandas as pd
|
170 |
-
import joblib
|
171 |
-
|
172 |
-
# Load the original dataset to get unique values for dropdowns
|
173 |
-
df_original = pd.read_csv('ds_salaries.csv')
|
174 |
-
|
175 |
-
# Load the best model
|
176 |
-
best_model = joblib.load('best_model.pkl')
|
177 |
-
|
178 |
-
# Streamlit app
|
179 |
-
st.title('Data Science Salary Predictor')
|
180 |
-
|
181 |
-
# Input features
|
182 |
-
experience_level = st.selectbox('Experience Level', df_original['experience_level'].unique())
|
183 |
-
employment_type = st.selectbox('Employment Type', df_original['employment_type'].unique())
|
184 |
-
job_title = st.selectbox('Job Title', df_original['job_title'].unique())
|
185 |
-
employee_residence = st.selectbox('Employee Residence', df_original['employee_residence'].unique())
|
186 |
-
remote_ratio = st.selectbox('Remote Ratio', df_original['remote_ratio'].unique())
|
187 |
-
company_location = st.selectbox('Company Location', df_original['company_location'].unique())
|
188 |
-
company_size = st.selectbox('Company Size', df_original['company_size'].unique())
|
189 |
-
|
190 |
-
# Predict salary
|
191 |
-
input_data = pd.DataFrame({
|
192 |
-
'work_year': [2023],
|
193 |
-
'experience_level': [experience_level],
|
194 |
-
'employment_type': [employment_type],
|
195 |
-
'job_title': [job_title],
|
196 |
-
'employee_residence': [employee_residence],
|
197 |
-
'remote_ratio': [remote_ratio],
|
198 |
-
'company_location': [company_location],
|
199 |
-
'company_size': [company_size]
|
200 |
-
})
|
201 |
-
|
202 |
-
# Encode categorical variables
|
203 |
-
categorical_columns = ['experience_level', 'employment_type', 'job_title', 'employee_residence', 'company_location', 'company_size']
|
204 |
-
input_data = pd.get_dummies(input_data, columns=categorical_columns, drop_first=True)
|
205 |
-
|
206 |
-
# Align input data with training data columns
|
207 |
-
input_data = input_data.reindex(columns=X_train.columns, fill_value=0)
|
208 |
-
|
209 |
-
# Predict the salary
|
210 |
-
salary_prediction = best_model.predict(input_data)[0]
|
211 |
-
st.write(f'Predicted Salary: ${salary_prediction:.2f}')
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|