Spaces:
Runtime error
Runtime error
File size: 12,370 Bytes
105b369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import json
from typing import List, Any, Optional, Dict, Union, Callable, Tuple
from pydantic import BaseModel, ConfigDict, field_validator, model_validator
from phi.assistant.openai.file import File
from phi.assistant.openai.exceptions import AssistantIdNotSet
from phi.tools import Tool, Toolkit
from phi.tools.function import Function
from phi.utils.log import logger, set_log_level_to_debug
try:
from openai import OpenAI
from openai.types.beta.assistant import Assistant as OpenAIAssistantType
from openai.types.beta.assistant_deleted import AssistantDeleted as OpenAIAssistantDeleted
except ImportError:
logger.error("`openai` not installed")
raise
class OpenAIAssistant(BaseModel):
# -*- LLM settings
model: str = "gpt-4-1106-preview"
openai: Optional[OpenAI] = None
# -*- OpenAIAssistant settings
# OpenAIAssistant id which can be referenced in API endpoints.
id: Optional[str] = None
# The object type, populated by the API. Always assistant.
object: Optional[str] = None
# The name of the assistant. The maximum length is 256 characters.
name: Optional[str] = None
# The description of the assistant. The maximum length is 512 characters.
description: Optional[str] = None
# The system instructions that the assistant uses. The maximum length is 32768 characters.
instructions: Optional[str] = None
# -*- OpenAIAssistant Tools
# A list of tools provided to the assistant. There can be a maximum of 128 tools per assistant.
# Tools can be of types code_interpreter, retrieval, or function.
tools: Optional[List[Union[Tool, Toolkit, Callable, Dict, Function]]] = None
# -*- Functions available to the OpenAIAssistant to call
# Functions extracted from the tools which can be executed locally by the assistant.
functions: Optional[Dict[str, Function]] = None
# -*- OpenAIAssistant Files
# A list of file IDs attached to this assistant.
# There can be a maximum of 20 files attached to the assistant.
# Files are ordered by their creation date in ascending order.
file_ids: Optional[List[str]] = None
# Files attached to this assistant.
files: Optional[List[File]] = None
# -*- OpenAIAssistant Storage
# storage: Optional[AssistantStorage] = None
# Create table if it doesn't exist
# create_storage: bool = True
# AssistantRow from the database: DO NOT SET THIS MANUALLY
# database_row: Optional[AssistantRow] = None
# -*- OpenAIAssistant Knowledge Base
# knowledge_base: Optional[AssistantKnowledge] = None
# Set of 16 key-value pairs that can be attached to an object.
# This can be useful for storing additional information about the object in a structured format.
# Keys can be a maximum of 64 characters long and values can be a maximum of 512 characters long.
metadata: Optional[Dict[str, Any]] = None
# True if this assistant is active
is_active: bool = True
# The Unix timestamp (in seconds) for when the assistant was created.
created_at: Optional[int] = None
# If True, show debug logs
debug_mode: bool = False
# Enable monitoring on phidata.com
monitoring: bool = False
openai_assistant: Optional[OpenAIAssistantType] = None
model_config = ConfigDict(arbitrary_types_allowed=True)
@field_validator("debug_mode", mode="before")
def set_log_level(cls, v: bool) -> bool:
if v:
set_log_level_to_debug()
logger.debug("Debug logs enabled")
return v
@property
def client(self) -> OpenAI:
return self.openai or OpenAI()
@model_validator(mode="after")
def extract_functions_from_tools(self) -> "OpenAIAssistant":
if self.tools is not None:
for tool in self.tools:
if self.functions is None:
self.functions = {}
if isinstance(tool, Toolkit):
self.functions.update(tool.functions)
logger.debug(f"Functions from {tool.name} added to OpenAIAssistant.")
elif isinstance(tool, Function):
self.functions[tool.name] = tool
logger.debug(f"Function {tool.name} added to OpenAIAssistant.")
elif callable(tool):
f = Function.from_callable(tool)
self.functions[f.name] = f
logger.debug(f"Function {f.name} added to OpenAIAssistant")
return self
def __enter__(self):
return self.create()
def __exit__(self, exc_type, exc_value, traceback):
self.delete()
def load_from_openai(self, openai_assistant: OpenAIAssistantType):
self.id = openai_assistant.id
self.object = openai_assistant.object
self.created_at = openai_assistant.created_at
self.file_ids = openai_assistant.file_ids
self.openai_assistant = openai_assistant
def get_tools_for_api(self) -> Optional[List[Dict[str, Any]]]:
if self.tools is None:
return None
tools_for_api = []
for tool in self.tools:
if isinstance(tool, Tool):
tools_for_api.append(tool.to_dict())
elif isinstance(tool, dict):
tools_for_api.append(tool)
elif callable(tool):
func = Function.from_callable(tool)
tools_for_api.append({"type": "function", "function": func.to_dict()})
elif isinstance(tool, Toolkit):
for _f in tool.functions.values():
tools_for_api.append({"type": "function", "function": _f.to_dict()})
elif isinstance(tool, Function):
tools_for_api.append({"type": "function", "function": tool.to_dict()})
return tools_for_api
def create(self) -> "OpenAIAssistant":
request_body: Dict[str, Any] = {}
if self.name is not None:
request_body["name"] = self.name
if self.description is not None:
request_body["description"] = self.description
if self.instructions is not None:
request_body["instructions"] = self.instructions
if self.tools is not None:
request_body["tools"] = self.get_tools_for_api()
if self.file_ids is not None or self.files is not None:
_file_ids = self.file_ids or []
if self.files is not None:
for _file in self.files:
_file = _file.get_or_create()
if _file.id is not None:
_file_ids.append(_file.id)
request_body["file_ids"] = _file_ids
if self.metadata is not None:
request_body["metadata"] = self.metadata
self.openai_assistant = self.client.beta.assistants.create(
model=self.model,
**request_body,
)
self.load_from_openai(self.openai_assistant)
logger.debug(f"OpenAIAssistant created: {self.id}")
return self
def get_id(self) -> Optional[str]:
return self.id or self.openai_assistant.id if self.openai_assistant else None
def get_from_openai(self) -> OpenAIAssistantType:
_assistant_id = self.get_id()
if _assistant_id is None:
raise AssistantIdNotSet("OpenAIAssistant.id not set")
self.openai_assistant = self.client.beta.assistants.retrieve(
assistant_id=_assistant_id,
)
self.load_from_openai(self.openai_assistant)
return self.openai_assistant
def get(self, use_cache: bool = True) -> "OpenAIAssistant":
if self.openai_assistant is not None and use_cache:
return self
self.get_from_openai()
return self
def get_or_create(self, use_cache: bool = True) -> "OpenAIAssistant":
try:
return self.get(use_cache=use_cache)
except AssistantIdNotSet:
return self.create()
def update(self) -> "OpenAIAssistant":
try:
assistant_to_update = self.get_from_openai()
if assistant_to_update is not None:
request_body: Dict[str, Any] = {}
if self.name is not None:
request_body["name"] = self.name
if self.description is not None:
request_body["description"] = self.description
if self.instructions is not None:
request_body["instructions"] = self.instructions
if self.tools is not None:
request_body["tools"] = self.get_tools_for_api()
if self.file_ids is not None or self.files is not None:
_file_ids = self.file_ids or []
if self.files is not None:
for _file in self.files:
try:
_file = _file.get()
if _file.id is not None:
_file_ids.append(_file.id)
except Exception as e:
logger.warning(f"Unable to get file: {e}")
continue
request_body["file_ids"] = _file_ids
if self.metadata:
request_body["metadata"] = self.metadata
self.openai_assistant = self.client.beta.assistants.update(
assistant_id=assistant_to_update.id,
model=self.model,
**request_body,
)
self.load_from_openai(self.openai_assistant)
logger.debug(f"OpenAIAssistant updated: {self.id}")
return self
raise ValueError("OpenAIAssistant not available")
except AssistantIdNotSet:
logger.warning("OpenAIAssistant not available")
raise
def delete(self) -> OpenAIAssistantDeleted:
try:
assistant_to_delete = self.get_from_openai()
if assistant_to_delete is not None:
deletion_status = self.client.beta.assistants.delete(
assistant_id=assistant_to_delete.id,
)
logger.debug(f"OpenAIAssistant deleted: {deletion_status.id}")
return deletion_status
except AssistantIdNotSet:
logger.warning("OpenAIAssistant not available")
raise
def to_dict(self) -> Dict[str, Any]:
return self.model_dump(
exclude_none=True,
include={
"name",
"model",
"id",
"object",
"description",
"instructions",
"metadata",
"tools",
"file_ids",
"files",
"created_at",
},
)
def pprint(self):
"""Pretty print using rich"""
from rich.pretty import pprint
pprint(self.to_dict())
def __str__(self) -> str:
return json.dumps(self.to_dict(), indent=4)
def __repr__(self) -> str:
return f"<OpenAIAssistant name={self.name} id={self.id}>"
#
# def run(self, thread: Optional["Thread"]) -> "Thread":
# from phi.assistant.openai.thread import Thread
#
# return Thread(assistant=self, thread=thread).run()
def print_response(self, message: str, markdown: bool = False) -> None:
"""Print a response from the assistant"""
from phi.assistant.openai.thread import Thread
thread = Thread()
thread.print_response(message=message, assistant=self, markdown=markdown)
def cli_app(
self,
user: str = "User",
emoji: str = ":sunglasses:",
current_message_only: bool = True,
markdown: bool = True,
exit_on: Tuple[str, ...] = ("exit", "bye"),
) -> None:
from rich.prompt import Prompt
from phi.assistant.openai.thread import Thread
thread = Thread()
while True:
message = Prompt.ask(f"[bold] {emoji} {user} [/bold]")
if message in exit_on:
break
thread.print_response(
message=message, assistant=self, current_message_only=current_message_only, markdown=markdown
)
|