File size: 15,218 Bytes
105b369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
from typing import Any, Optional, Dict, List, Union, Callable, cast
from typing_extensions import Literal

from pydantic import BaseModel, ConfigDict, model_validator

from phi.assistant.openai.assistant import OpenAIAssistant
from phi.assistant.openai.exceptions import ThreadIdNotSet, AssistantIdNotSet, RunIdNotSet
from phi.tools import Tool, Toolkit
from phi.tools.function import Function
from phi.utils.functions import get_function_call
from phi.utils.log import logger

try:
    from openai import OpenAI
    from openai.types.beta.threads.run import (
        Run as OpenAIRun,
        RequiredAction,
        LastError,
    )
    from openai.types.beta.threads.required_action_function_tool_call import RequiredActionFunctionToolCall
    from openai.types.beta.threads.run_submit_tool_outputs_params import ToolOutput
except ImportError:
    logger.error("`openai` not installed")
    raise


class Run(BaseModel):
    # -*- Run settings
    # Run id which can be referenced in API endpoints.
    id: Optional[str] = None
    # The object type, populated by the API. Always assistant.run.
    object: Optional[str] = None

    # The ID of the thread that was executed on as a part of this run.
    thread_id: Optional[str] = None
    # OpenAIAssistant used for this run
    assistant: Optional[OpenAIAssistant] = None
    # The ID of the assistant used for execution of this run.
    assistant_id: Optional[str] = None

    # The status of the run, which can be either
    # queued, in_progress, requires_action, cancelling, cancelled, failed, completed, or expired.
    status: Optional[
        Literal["queued", "in_progress", "requires_action", "cancelling", "cancelled", "failed", "completed", "expired"]
    ] = None

    # Details on the action required to continue the run. Will be null if no action is required.
    required_action: Optional[RequiredAction] = None

    # The Unix timestamp (in seconds) for when the run was created.
    created_at: Optional[int] = None
    # The Unix timestamp (in seconds) for when the run was started.
    started_at: Optional[int] = None
    # The Unix timestamp (in seconds) for when the run will expire.
    expires_at: Optional[int] = None
    # The Unix timestamp (in seconds) for when the run was cancelled.
    cancelled_at: Optional[int] = None
    # The Unix timestamp (in seconds) for when the run failed.
    failed_at: Optional[int] = None
    # The Unix timestamp (in seconds) for when the run was completed.
    completed_at: Optional[int] = None

    # The list of File IDs the assistant used for this run.
    file_ids: Optional[List[str]] = None

    # The ID of the Model to be used to execute this run. If a value is provided here,
    # it will override the model associated with the assistant.
    # If not, the model associated with the assistant will be used.
    model: Optional[str] = None
    # Override the default system message of the assistant.
    # This is useful for modifying the behavior on a per-run basis.
    instructions: Optional[str] = None
    # Override the tools the assistant can use for this run.
    # This is useful for modifying the behavior on a per-run basis.
    tools: Optional[List[Union[Tool, Toolkit, Callable, Dict, Function]]] = None
    # Functions extracted from the tools which can be executed locally by the assistant.
    functions: Optional[Dict[str, Function]] = None

    # The last error associated with this run. Will be null if there are no errors.
    last_error: Optional[LastError] = None

    # Set of 16 key-value pairs that can be attached to an object.
    # This can be useful for storing additional information about the object in a structured format.
    # Keys can be a maximum of 64 characters long and values can be a maximum of 512 characters long.
    metadata: Optional[Dict[str, Any]] = None

    # If True, show debug logs
    debug_mode: bool = False
    # Enable monitoring on phidata.com
    monitoring: bool = False

    openai: Optional[OpenAI] = None
    openai_run: Optional[OpenAIRun] = None

    model_config = ConfigDict(arbitrary_types_allowed=True)

    @property
    def client(self) -> OpenAI:
        return self.openai or OpenAI()

    @model_validator(mode="after")
    def extract_functions_from_tools(self) -> "Run":
        if self.tools is not None:
            for tool in self.tools:
                if self.functions is None:
                    self.functions = {}
                if isinstance(tool, Toolkit):
                    self.functions.update(tool.functions)
                    logger.debug(f"Functions from {tool.name} added to OpenAIAssistant.")
                elif isinstance(tool, Function):
                    self.functions[tool.name] = tool
                    logger.debug(f"Function {tool.name} added to OpenAIAssistant.")
                elif callable(tool):
                    f = Function.from_callable(tool)
                    self.functions[f.name] = f
                    logger.debug(f"Function {f.name} added to OpenAIAssistant")
        return self

    def load_from_openai(self, openai_run: OpenAIRun):
        self.id = openai_run.id
        self.object = openai_run.object
        self.status = openai_run.status
        self.required_action = openai_run.required_action
        self.last_error = openai_run.last_error
        self.created_at = openai_run.created_at
        self.started_at = openai_run.started_at
        self.expires_at = openai_run.expires_at
        self.cancelled_at = openai_run.cancelled_at
        self.failed_at = openai_run.failed_at
        self.completed_at = openai_run.completed_at
        self.file_ids = openai_run.file_ids
        self.openai_run = openai_run

    def get_tools_for_api(self) -> Optional[List[Dict[str, Any]]]:
        if self.tools is None:
            return None

        tools_for_api = []
        for tool in self.tools:
            if isinstance(tool, Tool):
                tools_for_api.append(tool.to_dict())
            elif isinstance(tool, dict):
                tools_for_api.append(tool)
            elif callable(tool):
                func = Function.from_callable(tool)
                tools_for_api.append({"type": "function", "function": func.to_dict()})
            elif isinstance(tool, Toolkit):
                for _f in tool.functions.values():
                    tools_for_api.append({"type": "function", "function": _f.to_dict()})
            elif isinstance(tool, Function):
                tools_for_api.append({"type": "function", "function": tool.to_dict()})
        return tools_for_api

    def create(
        self,
        thread_id: Optional[str] = None,
        assistant: Optional[OpenAIAssistant] = None,
        assistant_id: Optional[str] = None,
    ) -> "Run":
        _thread_id = thread_id or self.thread_id
        if _thread_id is None:
            raise ThreadIdNotSet("Thread.id not set")

        _assistant_id = assistant.get_id() if assistant is not None else assistant_id
        if _assistant_id is None:
            _assistant_id = self.assistant.get_id() if self.assistant is not None else self.assistant_id
        if _assistant_id is None:
            raise AssistantIdNotSet("OpenAIAssistant.id not set")

        request_body: Dict[str, Any] = {}
        if self.model is not None:
            request_body["model"] = self.model
        if self.instructions is not None:
            request_body["instructions"] = self.instructions
        if self.tools is not None:
            request_body["tools"] = self.get_tools_for_api()
        if self.metadata is not None:
            request_body["metadata"] = self.metadata

        self.openai_run = self.client.beta.threads.runs.create(
            thread_id=_thread_id, assistant_id=_assistant_id, **request_body
        )
        self.load_from_openai(self.openai_run)  # type: ignore
        logger.debug(f"Run created: {self.id}")
        return self

    def get_id(self) -> Optional[str]:
        return self.id or self.openai_run.id if self.openai_run else None

    def get_from_openai(self, thread_id: Optional[str] = None) -> OpenAIRun:
        _thread_id = thread_id or self.thread_id
        if _thread_id is None:
            raise ThreadIdNotSet("Thread.id not set")

        _run_id = self.get_id()
        if _run_id is None:
            raise RunIdNotSet("Run.id not set")

        self.openai_run = self.client.beta.threads.runs.retrieve(
            thread_id=_thread_id,
            run_id=_run_id,
        )
        self.load_from_openai(self.openai_run)
        return self.openai_run

    def get(self, use_cache: bool = True, thread_id: Optional[str] = None) -> "Run":
        if self.openai_run is not None and use_cache:
            return self

        self.get_from_openai(thread_id=thread_id)
        return self

    def get_or_create(
        self,
        use_cache: bool = True,
        thread_id: Optional[str] = None,
        assistant: Optional[OpenAIAssistant] = None,
        assistant_id: Optional[str] = None,
    ) -> "Run":
        try:
            return self.get(use_cache=use_cache)
        except RunIdNotSet:
            return self.create(thread_id=thread_id, assistant=assistant, assistant_id=assistant_id)

    def update(self, thread_id: Optional[str] = None) -> "Run":
        try:
            run_to_update = self.get_from_openai(thread_id=thread_id)
            if run_to_update is not None:
                request_body: Dict[str, Any] = {}
                if self.metadata is not None:
                    request_body["metadata"] = self.metadata

                self.openai_run = self.client.beta.threads.runs.update(
                    thread_id=run_to_update.thread_id,
                    run_id=run_to_update.id,
                    **request_body,
                )
                self.load_from_openai(self.openai_run)
                logger.debug(f"Run updated: {self.id}")
                return self
            raise ValueError("Run not available")
        except (ThreadIdNotSet, RunIdNotSet):
            logger.warning("Message not available")
            raise

    def wait(
        self,
        interval: int = 1,
        timeout: Optional[int] = None,
        thread_id: Optional[str] = None,
        status: Optional[List[str]] = None,
        callback: Optional[Callable[[OpenAIRun], None]] = None,
    ) -> bool:
        import time

        status_to_wait = status or ["requires_action", "cancelling", "cancelled", "failed", "completed", "expired"]
        start_time = time.time()
        while True:
            logger.debug(f"Waiting for run {self.id} to complete")
            run = self.get_from_openai(thread_id=thread_id)
            logger.debug(f"Run {run.id} {run.status}")
            if callback is not None:
                callback(run)
            if run.status in status_to_wait:
                return True
            if timeout is not None and time.time() - start_time > timeout:
                logger.error(f"Run {run.id} did not complete within {timeout} seconds")
                return False
                # raise TimeoutError(f"Run {run.id} did not complete within {timeout} seconds")
            time.sleep(interval)

    def run(
        self,
        thread_id: Optional[str] = None,
        assistant: Optional[OpenAIAssistant] = None,
        assistant_id: Optional[str] = None,
        wait: bool = True,
        callback: Optional[Callable[[OpenAIRun], None]] = None,
    ) -> "Run":
        # Update Run with new values
        self.thread_id = thread_id or self.thread_id
        self.assistant = assistant or self.assistant
        self.assistant_id = assistant_id or self.assistant_id

        # Create Run
        self.create()

        run_completed = not wait
        while not run_completed:
            self.wait(callback=callback)

            # -*- Check if run requires action
            if self.status == "requires_action":
                if self.assistant is None:
                    logger.warning("OpenAIAssistant not available to complete required_action")
                    return self
                if self.required_action is not None:
                    if self.required_action.type == "submit_tool_outputs":
                        tool_calls: List[RequiredActionFunctionToolCall] = (
                            self.required_action.submit_tool_outputs.tool_calls
                        )

                        tool_outputs = []
                        for tool_call in tool_calls:
                            if tool_call.type == "function":
                                run_functions = self.assistant.functions
                                if self.functions is not None:
                                    if run_functions is not None:
                                        run_functions.update(self.functions)
                                    else:
                                        run_functions = self.functions
                                function_call = get_function_call(
                                    name=tool_call.function.name,
                                    arguments=tool_call.function.arguments,
                                    functions=run_functions,
                                )
                                if function_call is None:
                                    logger.error(f"Function {tool_call.function.name} not found")
                                    continue

                                # -*- Run function call
                                success = function_call.execute()
                                if not success:
                                    logger.error(f"Function {tool_call.function.name} failed")
                                    continue

                                output = str(function_call.result) if function_call.result is not None else ""
                                tool_outputs.append(ToolOutput(tool_call_id=tool_call.id, output=output))

                        # -*- Submit tool outputs
                        _oai_run = cast(OpenAIRun, self.openai_run)
                        self.openai_run = self.client.beta.threads.runs.submit_tool_outputs(
                            thread_id=_oai_run.thread_id,
                            run_id=_oai_run.id,
                            tool_outputs=tool_outputs,
                        )

                        self.load_from_openai(self.openai_run)
            else:
                run_completed = True
        return self

    def to_dict(self) -> Dict[str, Any]:
        return self.model_dump(
            exclude_none=True,
            include={
                "id",
                "object",
                "thread_id",
                "assistant_id",
                "status",
                "required_action",
                "last_error",
                "model",
                "instructions",
                "tools",
                "metadata",
            },
        )

    def pprint(self):
        """Pretty print using rich"""
        from rich.pretty import pprint

        pprint(self.to_dict())

    def __str__(self) -> str:
        import json

        return json.dumps(self.to_dict(), indent=4)