Spaces:
Runtime error
Runtime error
File size: 12,578 Bytes
105b369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from typing import Optional, Any, Dict, List
from typing_extensions import Literal
from phi.aws.api_client import AwsApiClient
from phi.aws.resource.base import AwsResource
from phi.cli.console import print_info
from phi.utils.log import logger
class EmrCluster(AwsResource):
"""
Reference:
- https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/emr.html
"""
resource_type: Optional[str] = "EmrCluster"
service_name: str = "emr"
# Name of the cluster.
name: str
# The location in Amazon S3 to write the log files of the job flow.
# If a value is not provided, logs are not created.
log_uri: Optional[str] = None
# The KMS key used for encrypting log files. If a value is not provided, the logs remain encrypted by AES-256.
# This attribute is only available with Amazon EMR version 5.30.0 and later, excluding Amazon EMR 6.0.0.
log_encryption_kms_key_id: Optional[str] = None
# A JSON string for selecting additional features.
additional_info: Optional[str] = None
# The Amazon EMR release label, which determines the version of open-source application packages installed on the
# cluster. Release labels are in the form emr-x.x.x,
# where x.x.x is an Amazon EMR release version such as emr-5.14.0 .
release_label: Optional[str] = None
# A specification of the number and type of Amazon EC2 instances.
instances: Optional[Dict[str, Any]] = None
# A list of steps to run.
steps: Optional[List[Dict[str, Any]]] = None
# A list of bootstrap actions to run before Hadoop starts on the cluster nodes.
bootstrap_actions: Optional[List[Dict[str, Any]]] = None
# For Amazon EMR releases 3.x and 2.x. For Amazon EMR releases 4.x and later, use Applications.
# A list of strings that indicates third-party software to use.
supported_products: Optional[List[str]]
new_supported_products: Optional[List[Dict[str, Any]]] = None
# Applies to Amazon EMR releases 4.0 and later.
# A case-insensitive list of applications for Amazon EMR to install and configure when launching the cluster.
applications: Optional[List[Dict[str, Any]]] = None
# For Amazon EMR releases 4.0 and later. The list of configurations supplied for the EMR cluster you are creating.
configurations: Optional[List[Dict[str, Any]]] = None
# Also called instance profile and EC2 role. An IAM role for an EMR cluster.
# The EC2 instances of the cluster assume this role. The default role is EMR_EC2_DefaultRole.
# In order to use the default role, you must have already created it using the CLI or console.
job_flow_role: Optional[str] = None
# he IAM role that Amazon EMR assumes in order to access Amazon Web Services resources on your behalf.
service_role: Optional[str] = None
# A list of tags to associate with a cluster and propagate to Amazon EC2 instances.
tags: Optional[List[Dict[str, str]]] = None
# The name of a security configuration to apply to the cluster.
security_configuration: Optional[str] = None
# An IAM role for automatic scaling policies. The default role is EMR_AutoScaling_DefaultRole.
# The IAM role provides permissions that the automatic scaling feature requires to launch and terminate EC2
# instances in an instance group.
auto_scaling_role: Optional[str] = None
scale_down_behavior: Optional[Literal["TERMINATE_AT_INSTANCE_HOUR", "TERMINATE_AT_TASK_COMPLETION"]] = None
custom_ami_id: Optional[str] = None
# The size, in GiB, of the Amazon EBS root device volume of the Linux AMI that is used for each EC2 instance.
ebs_root_volume_size: Optional[int] = None
repo_upgrade_on_boot: Optional[Literal["SECURITY", "NONE"]] = None
# Attributes for Kerberos configuration when Kerberos authentication is enabled using a security configuration.
kerberos_attributes: Optional[Dict[str, str]] = None
# Specifies the number of steps that can be executed concurrently.
# The default value is 1 . The maximum value is 256 .
step_concurrency_level: Optional[int] = None
# The specified managed scaling policy for an Amazon EMR cluster.
managed_scaling_policy: Optional[Dict[str, Any]] = None
placement_group_configs: Optional[List[Dict[str, Any]]] = None
# The auto-termination policy defines the amount of idle time in seconds after which a cluster terminates.
auto_termination_policy: Optional[Dict[str, int]] = None
# provided by api on create
# A unique identifier for the job flow.
job_flow_id: Optional[str] = None
# The Amazon Resource Name (ARN) of the cluster.
cluster_arn: Optional[str] = None
# ClusterSummary returned on read
cluster_summary: Optional[Dict] = None
def _create(self, aws_client: AwsApiClient) -> bool:
"""Creates the EmrCluster
Args:
aws_client: The AwsApiClient for the current cluster
"""
print_info(f"Creating {self.get_resource_type()}: {self.get_resource_name()}")
try:
# create a dict of args which are not null, otherwise aws type validation fails
not_null_args: Dict[str, Any] = {}
if self.log_uri:
not_null_args["LogUri"] = self.log_uri
if self.log_encryption_kms_key_id:
not_null_args["LogEncryptionKmsKeyId"] = self.log_encryption_kms_key_id
if self.additional_info:
not_null_args["AdditionalInfo"] = self.additional_info
if self.release_label:
not_null_args["ReleaseLabel"] = self.release_label
if self.instances:
not_null_args["Instances"] = self.instances
if self.steps:
not_null_args["Steps"] = self.steps
if self.bootstrap_actions:
not_null_args["BootstrapActions"] = self.bootstrap_actions
if self.supported_products:
not_null_args["SupportedProducts"] = self.supported_products
if self.new_supported_products:
not_null_args["NewSupportedProducts"] = self.new_supported_products
if self.applications:
not_null_args["Applications"] = self.applications
if self.configurations:
not_null_args["Configurations"] = self.configurations
if self.job_flow_role:
not_null_args["JobFlowRole"] = self.job_flow_role
if self.service_role:
not_null_args["ServiceRole"] = self.service_role
if self.tags:
not_null_args["Tags"] = self.tags
if self.security_configuration:
not_null_args["SecurityConfiguration"] = self.security_configuration
if self.auto_scaling_role:
not_null_args["AutoScalingRole"] = self.auto_scaling_role
if self.scale_down_behavior:
not_null_args["ScaleDownBehavior"] = self.scale_down_behavior
if self.custom_ami_id:
not_null_args["CustomAmiId"] = self.custom_ami_id
if self.ebs_root_volume_size:
not_null_args["EbsRootVolumeSize"] = self.ebs_root_volume_size
if self.repo_upgrade_on_boot:
not_null_args["RepoUpgradeOnBoot"] = self.repo_upgrade_on_boot
if self.kerberos_attributes:
not_null_args["KerberosAttributes"] = self.kerberos_attributes
if self.step_concurrency_level:
not_null_args["StepConcurrencyLevel"] = self.step_concurrency_level
if self.managed_scaling_policy:
not_null_args["ManagedScalingPolicy"] = self.managed_scaling_policy
if self.placement_group_configs:
not_null_args["PlacementGroupConfigs"] = self.placement_group_configs
if self.auto_termination_policy:
not_null_args["AutoTerminationPolicy"] = self.auto_termination_policy
# Get the service_client
service_client = self.get_service_client(aws_client)
# Create EmrCluster
create_response = service_client.run_job_flow(
Name=self.name,
**not_null_args,
)
logger.debug(f"create_response type: {type(create_response)}")
logger.debug(f"create_response: {create_response}")
self.job_flow_id = create_response.get("JobFlowId", None)
self.cluster_arn = create_response.get("ClusterArn", None)
self.active_resource = create_response
if self.active_resource is not None:
print_info(f"{self.get_resource_type()}: {self.get_resource_name()} created")
logger.debug(f"JobFlowId: {self.job_flow_id}")
logger.debug(f"ClusterArn: {self.cluster_arn}")
return True
except Exception as e:
logger.error(f"{self.get_resource_type()} could not be created.")
logger.error(e)
return False
def post_create(self, aws_client: AwsApiClient) -> bool:
## Wait for Cluster to be created
if self.wait_for_create:
try:
print_info("Waiting for EmrCluster to be active.")
if self.job_flow_id is not None:
waiter = self.get_service_client(aws_client).get_waiter("cluster_running")
waiter.wait(
ClusterId=self.job_flow_id,
WaiterConfig={
"Delay": self.waiter_delay,
"MaxAttempts": self.waiter_max_attempts,
},
)
else:
logger.warning("Skipping waiter, No ClusterId found")
except Exception as e:
logger.error("Waiter failed.")
logger.error(e)
return True
def _read(self, aws_client: AwsApiClient) -> Optional[Any]:
"""Returns the EmrCluster
Args:
aws_client: The AwsApiClient for the current cluster
"""
from botocore.exceptions import ClientError
logger.debug(f"Reading {self.get_resource_type()}: {self.get_resource_name()}")
try:
service_client = self.get_service_client(aws_client)
list_response = service_client.list_clusters()
# logger.debug(f"list_response type: {type(list_response)}")
# logger.debug(f"list_response: {list_response}")
cluster_summary_list = list_response.get("Clusters", None)
if cluster_summary_list is not None and isinstance(cluster_summary_list, list):
for _cluster_summary in cluster_summary_list:
cluster_name = _cluster_summary.get("Name", None)
if cluster_name == self.name:
self.active_resource = _cluster_summary
break
if self.active_resource is None:
logger.debug(f"No {self.get_resource_type()} found")
return None
# logger.debug(f"EmrCluster: {self.active_resource}")
self.job_flow_id = self.active_resource.get("Id", None)
self.cluster_arn = self.active_resource.get("ClusterArn", None)
except ClientError as ce:
logger.debug(f"ClientError: {ce}")
except Exception as e:
logger.error(f"Error reading {self.get_resource_type()}.")
logger.error(e)
return self.active_resource
def _delete(self, aws_client: AwsApiClient) -> bool:
"""Deletes the EmrCluster
Args:
aws_client: The AwsApiClient for the current cluster
"""
print_info(f"Deleting {self.get_resource_type()}: {self.get_resource_name()}")
try:
# populate self.job_flow_id
self._read(aws_client)
service_client = self.get_service_client(aws_client)
self.active_resource = None
if self.job_flow_id:
service_client.terminate_job_flows(JobFlowIds=[self.job_flow_id])
print_info(f"{self.get_resource_type()}: {self.get_resource_name()} deleted")
else:
logger.error("Could not find cluster id")
return True
except Exception as e:
logger.error(f"{self.get_resource_type()} could not be deleted.")
logger.error("Please try again or delete resources manually.")
logger.error(e)
return False
|