File size: 18,684 Bytes
105b369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import json
from textwrap import dedent
from typing import Optional, List, Iterator, Dict, Any


from phi.llm.base import LLM
from phi.llm.message import Message
from phi.tools.function import FunctionCall
from phi.utils.log import logger
from phi.utils.timer import Timer
from phi.utils.tools import (
    get_function_call_for_tool_call,
    extract_tool_from_xml,
    remove_function_calls_from_string,
)

try:
    from anthropic import Anthropic as AnthropicClient
    from anthropic.types import Message as AnthropicMessage
except ImportError:
    logger.error("`anthropic` not installed")
    raise


class Claude(LLM):
    name: str = "claude"
    model: str = "claude-3-opus-20240229"
    # -*- Request parameters
    max_tokens: Optional[int] = 1024
    temperature: Optional[float] = None
    stop_sequences: Optional[List[str]] = None
    top_p: Optional[float] = None
    top_k: Optional[int] = None
    request_params: Optional[Dict[str, Any]] = None
    # -*- Client parameters
    api_key: Optional[str] = None
    client_params: Optional[Dict[str, Any]] = None
    # -*- Provide the client manually
    anthropic_client: Optional[AnthropicClient] = None

    @property
    def client(self) -> AnthropicClient:
        if self.anthropic_client:
            return self.anthropic_client

        _client_params: Dict[str, Any] = {}
        if self.api_key:
            _client_params["api_key"] = self.api_key
        return AnthropicClient(**_client_params)

    @property
    def api_kwargs(self) -> Dict[str, Any]:
        _request_params: Dict[str, Any] = {}
        if self.max_tokens:
            _request_params["max_tokens"] = self.max_tokens
        if self.temperature:
            _request_params["temperature"] = self.temperature
        if self.stop_sequences:
            _request_params["stop_sequences"] = self.stop_sequences
        if self.tools is not None:
            if _request_params.get("stop_sequences") is None:
                _request_params["stop_sequences"] = ["</function_calls>"]
            elif "</function_calls>" not in _request_params["stop_sequences"]:
                _request_params["stop_sequences"].append("</function_calls>")
        if self.top_p:
            _request_params["top_p"] = self.top_p
        if self.top_k:
            _request_params["top_k"] = self.top_k
        if self.request_params:
            _request_params.update(self.request_params)
        return _request_params

    def invoke(self, messages: List[Message]) -> AnthropicMessage:
        api_kwargs: Dict[str, Any] = self.api_kwargs
        api_messages: List[dict] = []

        for m in messages:
            if m.role == "system":
                api_kwargs["system"] = m.content
            else:
                api_messages.append({"role": m.role, "content": m.content or ""})

        return self.client.messages.create(
            model=self.model,
            messages=api_messages,
            **api_kwargs,
        )

    def invoke_stream(self, messages: List[Message]) -> Any:
        api_kwargs: Dict[str, Any] = self.api_kwargs
        api_messages: List[dict] = []

        for m in messages:
            if m.role == "system":
                api_kwargs["system"] = m.content
            else:
                api_messages.append({"role": m.role, "content": m.content or ""})

        return self.client.messages.stream(
            model=self.model,
            messages=api_messages,
            **api_kwargs,
        )

    def response(self, messages: List[Message]) -> str:
        logger.debug("---------- Claude Response Start ----------")
        # -*- Log messages for debugging
        for m in messages:
            m.log()

        response_timer = Timer()
        response_timer.start()
        response: AnthropicMessage = self.invoke(messages=messages)
        response_timer.stop()
        logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")

        # -*- Parse response
        response_content = response.content[0].text

        # -*- Create assistant message
        assistant_message = Message(
            role=response.role or "assistant",
            content=response_content,
        )

        # Check if the response contains a tool call
        try:
            if response_content is not None:
                if "<function_calls>" in response_content:
                    # List of tool calls added to the assistant message
                    tool_calls: List[Dict[str, Any]] = []

                    # Add function call closing tag to the assistant message
                    # This is because we add </function_calls> as a stop sequence
                    assistant_message.content += "</function_calls>"  # type: ignore

                    # If the assistant is calling multiple functions, the response will contain multiple <invoke> tags
                    response_content = response_content.split("</invoke>")
                    for tool_call_response in response_content:
                        if "<invoke>" in tool_call_response:
                            # Extract tool call string from response
                            tool_call_dict = extract_tool_from_xml(tool_call_response)
                            tool_call_name = tool_call_dict.get("tool_name")
                            tool_call_args = tool_call_dict.get("parameters")
                            function_def = {"name": tool_call_name}
                            if tool_call_args is not None:
                                function_def["arguments"] = json.dumps(tool_call_args)
                            tool_calls.append(
                                {
                                    "type": "function",
                                    "function": function_def,
                                }
                            )
                            logger.debug(f"Tool Calls: {tool_calls}")

                    if len(tool_calls) > 0:
                        assistant_message.tool_calls = tool_calls
        except Exception as e:
            logger.warning(e)
            pass

        # -*- Update usage metrics
        # Add response time to metrics
        assistant_message.metrics["time"] = response_timer.elapsed
        if "response_times" not in self.metrics:
            self.metrics["response_times"] = []
        self.metrics["response_times"].append(response_timer.elapsed)

        # -*- Add assistant message to messages
        messages.append(assistant_message)
        assistant_message.log()

        # -*- Parse and run function call
        if assistant_message.tool_calls is not None and self.run_tools:
            # Remove the tool call from the response content
            final_response = remove_function_calls_from_string(assistant_message.content)  # type: ignore
            function_calls_to_run: List[FunctionCall] = []
            for tool_call in assistant_message.tool_calls:
                _function_call = get_function_call_for_tool_call(tool_call, self.functions)
                if _function_call is None:
                    messages.append(Message(role="user", content="Could not find function to call."))
                    continue
                if _function_call.error is not None:
                    messages.append(Message(role="user", content=_function_call.error))
                    continue
                function_calls_to_run.append(_function_call)

            if self.show_tool_calls:
                if len(function_calls_to_run) == 1:
                    final_response += f" - Running: {function_calls_to_run[0].get_call_str()}\n\n"
                elif len(function_calls_to_run) > 1:
                    final_response += "Running:"
                    for _f in function_calls_to_run:
                        final_response += f"\n - {_f.get_call_str()}"
                    final_response += "\n\n"

            function_call_results = self.run_function_calls(function_calls_to_run, role="user")
            if len(function_call_results) > 0:
                fc_responses = "<function_results>"

                for _fc_message in function_call_results:
                    fc_responses += "<result>"
                    fc_responses += "<tool_name>" + _fc_message.tool_call_name + "</tool_name>"  # type: ignore
                    fc_responses += "<stdout>" + _fc_message.content + "</stdout>"  # type: ignore
                    fc_responses += "</result>"
                fc_responses += "</function_results>"

                messages.append(Message(role="user", content=fc_responses))

            # -*- Yield new response using results of tool calls
            final_response += self.response(messages=messages)
            return final_response
        logger.debug("---------- Claude Response End ----------")
        # -*- Return content if no function calls are present
        if assistant_message.content is not None:
            return assistant_message.get_content_string()
        return "Something went wrong, please try again."

    def response_stream(self, messages: List[Message]) -> Iterator[str]:
        logger.debug("---------- Claude Response Start ----------")
        # -*- Log messages for debugging
        for m in messages:
            m.log()

        assistant_message_content = ""
        tool_calls_counter = 0
        response_is_tool_call = False
        is_closing_tool_call_tag = False
        response_timer = Timer()
        response_timer.start()
        response = self.invoke_stream(messages=messages)
        with response as stream:
            for stream_delta in stream.text_stream:
                # logger.debug(f"Stream Delta: {stream_delta}")

                # Add response content to assistant message
                if stream_delta is not None:
                    assistant_message_content += stream_delta

                # Detect if response is a tool call
                if not response_is_tool_call and ("<function" in stream_delta or "<invoke" in stream_delta):
                    response_is_tool_call = True
                    # logger.debug(f"Response is tool call: {response_is_tool_call}")

                # If response is a tool call, count the number of tool calls
                if response_is_tool_call:
                    # If the response is an opening tool call tag, increment the tool call counter
                    if "<invoke" in stream_delta:
                        tool_calls_counter += 1

                    # If the response is a closing tool call tag, decrement the tool call counter
                    if assistant_message_content.strip().endswith("</invoke>"):
                        tool_calls_counter -= 1

                    # If the response is a closing tool call tag and the tool call counter is 0,
                    # tool call response is complete
                    if tool_calls_counter == 0 and stream_delta.strip().endswith(">"):
                        response_is_tool_call = False
                        # logger.debug(f"Response is tool call: {response_is_tool_call}")
                        is_closing_tool_call_tag = True

                # -*- Yield content if not a tool call and content is not None
                if not response_is_tool_call and stream_delta is not None:
                    if is_closing_tool_call_tag and stream_delta.strip().endswith(">"):
                        is_closing_tool_call_tag = False
                        continue

                    yield stream_delta

        response_timer.stop()
        logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")

        # Add function call closing tag to the assistant message
        if assistant_message_content.count("<function_calls>") == 1:
            assistant_message_content += "</function_calls>"

        # -*- Create assistant message
        assistant_message = Message(
            role="assistant",
            content=assistant_message_content,
        )

        # Check if the response contains tool calls
        try:
            if "<invoke>" in assistant_message_content and "</invoke>" in assistant_message_content:
                # List of tool calls added to the assistant message
                tool_calls: List[Dict[str, Any]] = []
                # Break the response into tool calls
                tool_call_responses = assistant_message_content.split("</invoke>")
                for tool_call_response in tool_call_responses:
                    # Add back the closing tag if this is not the last tool call
                    if tool_call_response != tool_call_responses[-1]:
                        tool_call_response += "</invoke>"

                    if "<invoke>" in tool_call_response and "</invoke>" in tool_call_response:
                        # Extract tool call string from response
                        tool_call_dict = extract_tool_from_xml(tool_call_response)
                        tool_call_name = tool_call_dict.get("tool_name")
                        tool_call_args = tool_call_dict.get("parameters")
                        function_def = {"name": tool_call_name}
                        if tool_call_args is not None:
                            function_def["arguments"] = json.dumps(tool_call_args)
                        tool_calls.append(
                            {
                                "type": "function",
                                "function": function_def,
                            }
                        )
                        logger.debug(f"Tool Calls: {tool_calls}")

                # If tool call parsing is successful, add tool calls to the assistant message
                if len(tool_calls) > 0:
                    assistant_message.tool_calls = tool_calls
        except Exception:
            logger.warning(f"Could not parse tool calls from response: {assistant_message_content}")
            pass

        # -*- Update usage metrics
        # Add response time to metrics
        assistant_message.metrics["time"] = response_timer.elapsed
        if "response_times" not in self.metrics:
            self.metrics["response_times"] = []
        self.metrics["response_times"].append(response_timer.elapsed)

        # -*- Add assistant message to messages
        messages.append(assistant_message)
        assistant_message.log()

        # -*- Parse and run function call
        if assistant_message.tool_calls is not None and self.run_tools:
            function_calls_to_run: List[FunctionCall] = []
            for tool_call in assistant_message.tool_calls:
                _function_call = get_function_call_for_tool_call(tool_call, self.functions)
                if _function_call is None:
                    messages.append(Message(role="user", content="Could not find function to call."))
                    continue
                if _function_call.error is not None:
                    messages.append(Message(role="user", content=_function_call.error))
                    continue
                function_calls_to_run.append(_function_call)

            if self.show_tool_calls:
                if len(function_calls_to_run) == 1:
                    yield f"- Running: {function_calls_to_run[0].get_call_str()}\n\n"
                elif len(function_calls_to_run) > 1:
                    yield "Running:"
                    for _f in function_calls_to_run:
                        yield f"\n - {_f.get_call_str()}"
                    yield "\n\n"

            function_call_results = self.run_function_calls(function_calls_to_run, role="user")
            # Add results of the function calls to the messages
            if len(function_call_results) > 0:
                fc_responses = "<function_results>"

                for _fc_message in function_call_results:
                    fc_responses += "<result>"
                    fc_responses += "<tool_name>" + _fc_message.tool_call_name + "</tool_name>"  # type: ignore
                    fc_responses += "<stdout>" + _fc_message.content + "</stdout>"  # type: ignore
                    fc_responses += "</result>"
                fc_responses += "</function_results>"

                messages.append(Message(role="user", content=fc_responses))

            # -*- Yield new response using results of tool calls
            yield from self.response_stream(messages=messages)
        logger.debug("---------- Claude Response End ----------")

    def get_tool_call_prompt(self) -> Optional[str]:
        if self.functions is not None and len(self.functions) > 0:
            tool_call_prompt = dedent(
                """\
            In this environment you have access to a set of tools you can use to answer the user's question.

            You may call them like this:
            <function_calls>
            <invoke>
            <tool_name>$TOOL_NAME</tool_name>
            <parameters>
            <$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>
            ...
            </parameters>
            </invoke>
            </function_calls>
            """
            )
            tool_call_prompt += "\nHere are the tools available:"
            tool_call_prompt += "\n<tools>"
            for _f_name, _function in self.functions.items():
                _function_def = _function.get_definition_for_prompt_dict()
                if _function_def:
                    tool_call_prompt += "\n<tool_description>"
                    tool_call_prompt += f"\n<tool_name>{_function_def.get('name')}</tool_name>"
                    tool_call_prompt += f"\n<description>{_function_def.get('description')}</description>"
                    arguments = _function_def.get("arguments")
                    if arguments:
                        tool_call_prompt += "\n<parameters>"
                        for arg in arguments:
                            tool_call_prompt += "\n<parameter>"
                            tool_call_prompt += f"\n<name>{arg}</name>"
                            if isinstance(arguments.get(arg).get("type"), str):
                                tool_call_prompt += f"\n<type>{arguments.get(arg).get('type')}</type>"
                            else:
                                tool_call_prompt += f"\n<type>{arguments.get(arg).get('type')[0]}</type>"
                            tool_call_prompt += "\n</parameter>"
                    tool_call_prompt += "\n</parameters>"
                    tool_call_prompt += "\n</tool_description>"
            tool_call_prompt += "\n</tools>"
            return tool_call_prompt
        return None

    def get_system_prompt_from_llm(self) -> Optional[str]:
        return self.get_tool_call_prompt()