File size: 9,519 Bytes
105b369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import json
from typing import Optional, List, Iterator, Dict, Any

from phi.aws.api_client import AwsApiClient
from phi.llm.base import LLM
from phi.llm.message import Message
from phi.utils.log import logger
from phi.utils.timer import Timer

try:
    from boto3 import session  # noqa: F401
except ImportError:
    logger.error("`boto3` not installed")
    raise


class AwsBedrock(LLM):
    name: str = "AwsBedrock"
    model: str

    aws_region: Optional[str] = None
    aws_profile: Optional[str] = None
    aws_client: Optional[AwsApiClient] = None
    # -*- Request parameters
    request_params: Optional[Dict[str, Any]] = None

    _bedrock_client: Optional[Any] = None
    _bedrock_runtime_client: Optional[Any] = None

    def get_aws_region(self) -> Optional[str]:
        # Priority 1: Use aws_region from model
        if self.aws_region is not None:
            return self.aws_region

        # Priority 2: Get aws_region from env
        from os import getenv
        from phi.constants import AWS_REGION_ENV_VAR

        aws_region_env = getenv(AWS_REGION_ENV_VAR)
        if aws_region_env is not None:
            self.aws_region = aws_region_env
        return self.aws_region

    def get_aws_profile(self) -> Optional[str]:
        # Priority 1: Use aws_region from resource
        if self.aws_profile is not None:
            return self.aws_profile

        # Priority 2: Get aws_profile from env
        from os import getenv
        from phi.constants import AWS_PROFILE_ENV_VAR

        aws_profile_env = getenv(AWS_PROFILE_ENV_VAR)
        if aws_profile_env is not None:
            self.aws_profile = aws_profile_env
        return self.aws_profile

    def get_aws_client(self) -> AwsApiClient:
        if self.aws_client is not None:
            return self.aws_client

        self.aws_client = AwsApiClient(aws_region=self.get_aws_region(), aws_profile=self.get_aws_profile())
        return self.aws_client

    @property
    def bedrock_client(self):
        if self._bedrock_client is not None:
            return self._bedrock_client

        boto3_session: session = self.get_aws_client().boto3_session
        self._bedrock_client = boto3_session.client(service_name="bedrock")
        return self._bedrock_client

    @property
    def bedrock_runtime_client(self):
        if self._bedrock_runtime_client is not None:
            return self._bedrock_runtime_client

        boto3_session: session = self.get_aws_client().boto3_session
        self._bedrock_runtime_client = boto3_session.client(service_name="bedrock-runtime")
        return self._bedrock_runtime_client

    @property
    def api_kwargs(self) -> Dict[str, Any]:
        return {}

    def get_model_summaries(self) -> List[Dict[str, Any]]:
        list_response: dict = self.bedrock_client.list_foundation_models()
        if list_response is None or "modelSummaries" not in list_response:
            return []

        return list_response["modelSummaries"]

    def get_model_ids(self) -> List[str]:
        model_summaries: List[Dict[str, Any]] = self.get_model_summaries()
        if len(model_summaries) == 0:
            return []

        return [model_summary["modelId"] for model_summary in model_summaries]

    def get_model_details(self) -> Dict[str, Any]:
        model_details: dict = self.bedrock_client.get_foundation_model(modelIdentifier=self.model)

        if model_details is None or "modelDetails" not in model_details:
            return {}

        return model_details["modelDetails"]

    def invoke(self, body: Dict[str, Any]) -> Dict[str, Any]:
        response = self.bedrock_runtime_client.invoke_model(
            body=json.dumps(body),
            modelId=self.model,
            accept="application/json",
            contentType="application/json",
        )
        response_body = response.get("body")
        if response_body is None:
            return {}
        return json.loads(response_body.read())

    def invoke_stream(self, body: Dict[str, Any]) -> Iterator[Dict[str, Any]]:
        response = self.bedrock_runtime_client.invoke_model_with_response_stream(
            body=json.dumps(body),
            modelId=self.model,
        )
        for event in response.get("body"):
            chunk = event.get("chunk")
            if chunk:
                yield json.loads(chunk.get("bytes").decode())

    def get_request_body(self, messages: List[Message]) -> Dict[str, Any]:
        raise NotImplementedError("Please use a subclass of AwsBedrock")

    def parse_response_message(self, response: Dict[str, Any]) -> Message:
        raise NotImplementedError("Please use a subclass of AwsBedrock")

    def parse_response_delta(self, response: Dict[str, Any]) -> Optional[str]:
        raise NotImplementedError("Please use a subclass of AwsBedrock")

    def response(self, messages: List[Message]) -> str:
        logger.debug("---------- Bedrock Response Start ----------")
        # -*- Log messages for debugging
        for m in messages:
            m.log()

        response_timer = Timer()
        response_timer.start()
        response: Dict[str, Any] = self.invoke(body=self.get_request_body(messages))
        response_timer.stop()
        logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")

        # -*- Create assistant message
        assistant_message = self.parse_response_message(response)

        # -*- Update usage metrics
        # Add response time to metrics
        assistant_message.metrics["time"] = response_timer.elapsed
        if "response_times" not in self.metrics:
            self.metrics["response_times"] = []
        self.metrics["response_times"].append(response_timer.elapsed)

        # Add token usage to metrics
        prompt_tokens = 0
        if prompt_tokens is not None:
            assistant_message.metrics["prompt_tokens"] = prompt_tokens
            if "prompt_tokens" not in self.metrics:
                self.metrics["prompt_tokens"] = prompt_tokens
            else:
                self.metrics["prompt_tokens"] += prompt_tokens
        completion_tokens = 0
        if completion_tokens is not None:
            assistant_message.metrics["completion_tokens"] = completion_tokens
            if "completion_tokens" not in self.metrics:
                self.metrics["completion_tokens"] = completion_tokens
            else:
                self.metrics["completion_tokens"] += completion_tokens
        total_tokens = prompt_tokens + completion_tokens
        if total_tokens is not None:
            assistant_message.metrics["total_tokens"] = total_tokens
            if "total_tokens" not in self.metrics:
                self.metrics["total_tokens"] = total_tokens
            else:
                self.metrics["total_tokens"] += total_tokens

        # -*- Add assistant message to messages
        messages.append(assistant_message)
        assistant_message.log()

        logger.debug("---------- Bedrock Response End ----------")
        # -*- Return content
        return assistant_message.get_content_string()

    def response_stream(self, messages: List[Message]) -> Iterator[str]:
        logger.debug("---------- Bedrock Response Start ----------")

        assistant_message_content = ""
        completion_tokens = 0
        response_timer = Timer()
        response_timer.start()
        for delta in self.invoke_stream(body=self.get_request_body(messages)):
            completion_tokens += 1
            # -*- Parse response
            content = self.parse_response_delta(delta)
            # -*- Yield completion
            if content is not None:
                assistant_message_content += content
                yield content

        response_timer.stop()
        logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")

        # -*- Create assistant message
        assistant_message = Message(role="assistant")
        # -*- Add content to assistant message
        if assistant_message_content != "":
            assistant_message.content = assistant_message_content

        # -*- Update usage metrics
        # Add response time to metrics
        assistant_message.metrics["time"] = response_timer.elapsed
        if "response_times" not in self.metrics:
            self.metrics["response_times"] = []
        self.metrics["response_times"].append(response_timer.elapsed)

        # Add token usage to metrics
        prompt_tokens = 0
        assistant_message.metrics["prompt_tokens"] = prompt_tokens
        if "prompt_tokens" not in self.metrics:
            self.metrics["prompt_tokens"] = prompt_tokens
        else:
            self.metrics["prompt_tokens"] += prompt_tokens
        logger.debug(f"Estimated completion tokens: {completion_tokens}")
        assistant_message.metrics["completion_tokens"] = completion_tokens
        if "completion_tokens" not in self.metrics:
            self.metrics["completion_tokens"] = completion_tokens
        else:
            self.metrics["completion_tokens"] += completion_tokens
        total_tokens = prompt_tokens + completion_tokens
        assistant_message.metrics["total_tokens"] = total_tokens
        if "total_tokens" not in self.metrics:
            self.metrics["total_tokens"] = total_tokens
        else:
            self.metrics["total_tokens"] += total_tokens

        # -*- Add assistant message to messages
        messages.append(assistant_message)
        assistant_message.log()
        logger.debug("---------- Bedrock Response End ----------")