File size: 12,147 Bytes
105b369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from typing import Optional, List, Iterator, Dict, Any, Union

from phi.llm.base import LLM
from phi.llm.message import Message
from phi.tools.function import FunctionCall
from phi.utils.log import logger
from phi.utils.timer import Timer
from phi.utils.tools import get_function_call_for_tool_call

try:
    from mistralai.client import MistralClient
    from mistralai.models.chat_completion import (
        ChatMessage,
        DeltaMessage,
        ResponseFormat as ChatCompletionResponseFormat,
        ChatCompletionResponse,
        ChatCompletionStreamResponse,
        ToolCall as ChoiceDeltaToolCall,
    )
except ImportError:
    logger.error("`mistralai` not installed")
    raise


class Mistral(LLM):
    name: str = "Mistral"
    model: str = "mistral-large-latest"
    # -*- Request parameters
    temperature: Optional[float] = None
    max_tokens: Optional[int] = None
    top_p: Optional[float] = None
    random_seed: Optional[int] = None
    safe_mode: bool = False
    safe_prompt: bool = False
    response_format: Optional[Union[Dict[str, Any], ChatCompletionResponseFormat]] = None
    request_params: Optional[Dict[str, Any]] = None
    # -*- Client parameters
    api_key: Optional[str] = None
    endpoint: Optional[str] = None
    max_retries: Optional[int] = None
    timeout: Optional[int] = None
    client_params: Optional[Dict[str, Any]] = None
    # -*- Provide the MistralClient manually
    mistral_client: Optional[MistralClient] = None

    @property
    def client(self) -> MistralClient:
        if self.mistral_client:
            return self.mistral_client

        _client_params: Dict[str, Any] = {}
        if self.api_key:
            _client_params["api_key"] = self.api_key
        if self.endpoint:
            _client_params["endpoint"] = self.endpoint
        if self.max_retries:
            _client_params["max_retries"] = self.max_retries
        if self.timeout:
            _client_params["timeout"] = self.timeout
        if self.client_params:
            _client_params.update(self.client_params)
        return MistralClient(**_client_params)

    @property
    def api_kwargs(self) -> Dict[str, Any]:
        _request_params: Dict[str, Any] = {}
        if self.temperature:
            _request_params["temperature"] = self.temperature
        if self.max_tokens:
            _request_params["max_tokens"] = self.max_tokens
        if self.top_p:
            _request_params["top_p"] = self.top_p
        if self.random_seed:
            _request_params["random_seed"] = self.random_seed
        if self.safe_mode:
            _request_params["safe_mode"] = self.safe_mode
        if self.safe_prompt:
            _request_params["safe_prompt"] = self.safe_prompt
        if self.tools:
            _request_params["tools"] = self.get_tools_for_api()
            if self.tool_choice is None:
                _request_params["tool_choice"] = "auto"
            else:
                _request_params["tool_choice"] = self.tool_choice
        if self.request_params:
            _request_params.update(self.request_params)
        return _request_params

    def to_dict(self) -> Dict[str, Any]:
        _dict = super().to_dict()
        if self.temperature:
            _dict["temperature"] = self.temperature
        if self.max_tokens:
            _dict["max_tokens"] = self.max_tokens
        if self.random_seed:
            _dict["random_seed"] = self.random_seed
        if self.safe_mode:
            _dict["safe_mode"] = self.safe_mode
        if self.safe_prompt:
            _dict["safe_prompt"] = self.safe_prompt
        if self.response_format:
            _dict["response_format"] = self.response_format
        return _dict

    def invoke(self, messages: List[Message]) -> ChatCompletionResponse:
        return self.client.chat(
            messages=[m.to_dict() for m in messages],
            model=self.model,
            **self.api_kwargs,
        )

    def invoke_stream(self, messages: List[Message]) -> Iterator[ChatCompletionStreamResponse]:
        yield from self.client.chat_stream(
            messages=[m.to_dict() for m in messages],
            model=self.model,
            **self.api_kwargs,
        )  # type: ignore

    def response(self, messages: List[Message]) -> str:
        logger.debug("---------- Mistral Response Start ----------")
        # -*- Log messages for debugging
        for m in messages:
            m.log()

        response_timer = Timer()
        response_timer.start()
        response: ChatCompletionResponse = self.invoke(messages=messages)
        response_timer.stop()
        logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")
        # logger.debug(f"Mistral response type: {type(response)}")
        # logger.debug(f"Mistral response: {response}")

        # -*- Parse response
        response_message: ChatMessage = response.choices[0].message

        # -*- Create assistant message
        assistant_message = Message(
            role=response_message.role or "assistant",
            content=response_message.content,
        )
        if response_message.tool_calls is not None and len(response_message.tool_calls) > 0:
            assistant_message.tool_calls = [t.model_dump() for t in response_message.tool_calls]

        # -*- Update usage metrics
        # Add response time to metrics
        assistant_message.metrics["time"] = response_timer.elapsed
        if "response_times" not in self.metrics:
            self.metrics["response_times"] = []
        self.metrics["response_times"].append(response_timer.elapsed)
        # Add token usage to metrics
        self.metrics.update(response.usage.model_dump())

        # -*- Add assistant message to messages
        messages.append(assistant_message)
        assistant_message.log()

        # -*- Parse and run tool calls
        if assistant_message.tool_calls is not None and len(assistant_message.tool_calls) > 0:
            final_response = ""
            function_calls_to_run: List[FunctionCall] = []
            for tool_call in assistant_message.tool_calls:
                _tool_call_id = tool_call.get("id")
                _function_call = get_function_call_for_tool_call(tool_call, self.functions)
                if _function_call is None:
                    messages.append(
                        Message(role="tool", tool_call_id=_tool_call_id, content="Could not find function to call.")
                    )
                    continue
                if _function_call.error is not None:
                    messages.append(Message(role="tool", tool_call_id=_tool_call_id, content=_function_call.error))
                    continue
                function_calls_to_run.append(_function_call)

            if self.show_tool_calls:
                if len(function_calls_to_run) == 1:
                    final_response += f"\n - Running: {function_calls_to_run[0].get_call_str()}\n\n"
                elif len(function_calls_to_run) > 1:
                    final_response += "\nRunning:"
                    for _f in function_calls_to_run:
                        final_response += f"\n - {_f.get_call_str()}"
                    final_response += "\n\n"

            function_call_results = self.run_function_calls(function_calls_to_run)
            if len(function_call_results) > 0:
                messages.extend(function_call_results)
            # -*- Get new response using result of tool call
            final_response += self.response(messages=messages)
            return final_response
        logger.debug("---------- Mistral Response End ----------")
        # -*- Return content if no function calls are present
        if assistant_message.content is not None:
            return assistant_message.get_content_string()
        return "Something went wrong, please try again."

    def response_stream(self, messages: List[Message]) -> Iterator[str]:
        logger.debug("---------- Mistral Response Start ----------")
        # -*- Log messages for debugging
        for m in messages:
            m.log()

        assistant_message_role = None
        assistant_message_content = ""
        assistant_message_tool_calls: Optional[List[ChoiceDeltaToolCall]] = None
        response_timer = Timer()
        response_timer.start()
        for response in self.invoke_stream(messages=messages):
            # logger.debug(f"Mistral response type: {type(response)}")
            # logger.debug(f"Mistral response: {response}")
            # -*- Parse response
            response_delta: DeltaMessage = response.choices[0].delta
            if assistant_message_role is None and response_delta.role is not None:
                assistant_message_role = response_delta.role
            response_content: Optional[str] = response_delta.content
            response_tool_calls: Optional[List[ChoiceDeltaToolCall]] = response_delta.tool_calls

            # -*- Return content if present, otherwise get tool call
            if response_content is not None:
                assistant_message_content += response_content
                yield response_content

            # -*- Parse tool calls
            if response_tool_calls is not None and len(response_tool_calls) > 0:
                if assistant_message_tool_calls is None:
                    assistant_message_tool_calls = []
                assistant_message_tool_calls.extend(response_tool_calls)

        response_timer.stop()
        logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")

        # -*- Create assistant message
        assistant_message = Message(role=(assistant_message_role or "assistant"))
        # -*- Add content to assistant message
        if assistant_message_content != "":
            assistant_message.content = assistant_message_content
        # -*- Add tool calls to assistant message
        if assistant_message_tool_calls is not None:
            assistant_message.tool_calls = [t.model_dump() for t in assistant_message_tool_calls]

        # -*- Update usage metrics
        # Add response time to metrics
        assistant_message.metrics["time"] = response_timer.elapsed
        if "response_times" not in self.metrics:
            self.metrics["response_times"] = []
        self.metrics["response_times"].append(response_timer.elapsed)

        # -*- Add assistant message to messages
        messages.append(assistant_message)
        assistant_message.log()

        # -*- Parse and run tool calls
        if assistant_message.tool_calls is not None and len(assistant_message.tool_calls) > 0:
            function_calls_to_run: List[FunctionCall] = []
            for tool_call in assistant_message.tool_calls:
                _tool_call_id = tool_call.get("id")
                _function_call = get_function_call_for_tool_call(tool_call, self.functions)
                if _function_call is None:
                    messages.append(
                        Message(role="tool", tool_call_id=_tool_call_id, content="Could not find function to call.")
                    )
                    continue
                if _function_call.error is not None:
                    messages.append(Message(role="tool", tool_call_id=_tool_call_id, content=_function_call.error))
                    continue
                function_calls_to_run.append(_function_call)

            if self.show_tool_calls:
                if len(function_calls_to_run) == 1:
                    yield f"\n - Running: {function_calls_to_run[0].get_call_str()}\n\n"
                elif len(function_calls_to_run) > 1:
                    yield "\nRunning:"
                    for _f in function_calls_to_run:
                        yield f"\n - {_f.get_call_str()}"
                    yield "\n\n"

            function_call_results = self.run_function_calls(function_calls_to_run)
            if len(function_call_results) > 0:
                messages.extend(function_call_results)
            # -*- Yield new response using results of tool calls
            yield from self.response_stream(messages=messages)
        logger.debug("---------- Mistral Response End ----------")