File size: 11,873 Bytes
105b369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import json
from typing import Optional, List, Dict, Any
from hashlib import md5

try:
    from sqlalchemy.dialects import mysql
    from sqlalchemy.engine import create_engine, Engine
    from sqlalchemy.inspection import inspect
    from sqlalchemy.orm import Session, sessionmaker
    from sqlalchemy.schema import MetaData, Table, Column
    from sqlalchemy.sql.expression import text, func, select
    from sqlalchemy.types import DateTime
except ImportError:
    raise ImportError("`sqlalchemy` not installed")


from phi.document import Document
from phi.embedder import Embedder
from phi.embedder.openai import OpenAIEmbedder
from phi.vectordb.base import VectorDb
from phi.vectordb.distance import Distance
from phi.utils.log import logger


class S2VectorDb(VectorDb):
    def __init__(
        self,
        collection: str,
        schema: Optional[str] = "ai",
        db_url: Optional[str] = None,
        db_engine: Optional[Engine] = None,
        embedder: Embedder = OpenAIEmbedder(),
        distance: Distance = Distance.cosine,
    ):
        _engine: Optional[Engine] = db_engine
        if _engine is None and db_url is not None:
            _engine = create_engine(db_url)

        if _engine is None:
            raise ValueError("Must provide either db_url or db_engine")

        self.collection: str = collection
        self.schema: Optional[str] = schema
        self.db_url: Optional[str] = db_url
        self.db_engine: Engine = _engine
        self.metadata: MetaData = MetaData(schema=self.schema)
        self.embedder: Embedder = embedder
        self.dimensions: int = self.embedder.dimensions
        self.distance: Distance = distance
        self.Session: sessionmaker[Session] = sessionmaker(bind=self.db_engine)
        self.table: Table = self.get_table()

    def get_table(self) -> Table:
        return Table(
            self.collection,
            self.metadata,
            Column("id", mysql.TEXT),
            Column("name", mysql.TEXT),
            Column("meta_data", mysql.TEXT),
            Column("content", mysql.TEXT),
            Column("embedding", mysql.BLOB),  # Use BLOB for storing vector embeddings
            Column("usage", mysql.TEXT),
            Column("created_at", DateTime(timezone=True), server_default=text("now()")),
            Column("updated_at", DateTime(timezone=True), onupdate=text("now()")),
            Column("content_hash", mysql.TEXT),
            extend_existing=True,
        )

    def table_exists(self) -> bool:
        logger.debug(f"Checking if table exists: {self.table.name}")
        try:
            return inspect(self.db_engine).has_table(self.table.name, schema=self.schema)
        except Exception as e:
            logger.error(e)
            return False

    def create(self) -> None:
        if not self.table_exists():
            # with self.Session() as sess:
            #     with sess.begin():
            #         if self.schema is not None:
            #             logger.debug(f"Creating schema: {self.schema}")
            #             sess.execute(text(f"CREATE DATABASE IF NOT EXISTS {self.schema};"))
            logger.info(f"Creating table: {self.collection}")
            self.table.create(self.db_engine)

    def doc_exists(self, document: Document) -> bool:
        """
        Validating if the document exists or not

        Args:
            document (Document): Document to validate
        """
        columns = [self.table.c.name, self.table.c.content_hash]
        with self.Session.begin() as sess:
            cleaned_content = document.content.replace("\x00", "\ufffd")
            stmt = select(*columns).where(self.table.c.content_hash == md5(cleaned_content.encode()).hexdigest())
            result = sess.execute(stmt).first()
            return result is not None

    def name_exists(self, name: str) -> bool:
        """
        Validate if a row with this name exists or not

        Args:
            name (str): Name to check
        """
        with self.Session.begin() as sess:
            stmt = select(self.table.c.name).where(self.table.c.name == name)
            result = sess.execute(stmt).first()
            return result is not None

    def id_exists(self, id: str) -> bool:
        """
        Validate if a row with this id exists or not

        Args:
            id (str): Id to check
        """
        with self.Session.begin() as sess:
            stmt = select(self.table.c.id).where(self.table.c.id == id)
            result = sess.execute(stmt).first()
            return result is not None

    def insert(self, documents: List[Document], batch_size: int = 10) -> None:
        with self.Session.begin() as sess:
            counter = 0
            for document in documents:
                document.embed(embedder=self.embedder)
                cleaned_content = document.content.replace("\x00", "\ufffd")
                content_hash = md5(cleaned_content.encode()).hexdigest()
                _id = document.id or content_hash

                meta_data_json = json.dumps(document.meta_data)
                usage_json = json.dumps(document.usage)
                embedding_json = json.dumps(document.embedding)
                json_array_pack = text("JSON_ARRAY_PACK(:embedding)").bindparams(embedding=embedding_json)

                stmt = mysql.insert(self.table).values(
                    id=_id,
                    name=document.name,
                    meta_data=meta_data_json,
                    content=cleaned_content,
                    embedding=json_array_pack,
                    usage=usage_json,
                    content_hash=content_hash,
                )
                sess.execute(stmt)
                counter += 1
                logger.debug(f"Inserted document: {document.name} ({document.meta_data})")

            # Commit all documents
            sess.commit()
            logger.debug(f"Committed {counter} documents")

    def upsert_available(self) -> bool:
        return False

    def upsert(self, documents: List[Document], batch_size: int = 20) -> None:
        """
        Upsert documents into the database.

        Args:
            documents (List[Document]): List of documents to upsert
            batch_size (int): Batch size for upserting documents
        """
        with self.Session.begin() as sess:
            counter = 0
            for document in documents:
                document.embed(embedder=self.embedder)
                cleaned_content = document.content.replace("\x00", "\ufffd")
                content_hash = md5(cleaned_content.encode()).hexdigest()
                _id = document.id or content_hash

                meta_data_json = json.dumps(document.meta_data)
                usage_json = json.dumps(document.usage)
                embedding_json = json.dumps(document.embedding)
                json_array_pack = text("JSON_ARRAY_PACK(:embedding)").bindparams(embedding=embedding_json)

                stmt = mysql.insert(self.table).values(
                    id=_id,
                    name=document.name,
                    meta_data=meta_data_json,
                    content=cleaned_content,
                    embedding=json_array_pack,
                    usage=usage_json,
                    content_hash=content_hash,
                )
                sess.execute(stmt)
                counter += 1
                logger.debug(f"Inserted document: {document.id} | {document.name} | {document.meta_data}")

            # Commit all remaining documents
            sess.commit()
            logger.debug(f"Committed {counter} documents")

    def search(self, query: str, limit: int = 5, filters: Optional[Dict[str, Any]] = None) -> List[Document]:
        query_embedding = self.embedder.get_embedding(query)
        if query_embedding is None:
            logger.error(f"Error getting embedding for Query: {query}")
            return []

        columns = [
            self.table.c.name,
            self.table.c.meta_data,
            self.table.c.content,
            func.json_array_unpack(self.table.c.embedding).label(
                "embedding"
            ),  # Unpack embedding here # self.table.c.embedding,
            self.table.c.usage,
        ]

        stmt = select(*columns)

        if filters is not None:
            for key, value in filters.items():
                if hasattr(self.table.c, key):
                    stmt = stmt.where(getattr(self.table.c, key) == value)

        if self.distance == Distance.l2:
            stmt = stmt.order_by(self.table.c.embedding.max_inner_product(query_embedding))
        if self.distance == Distance.cosine:
            embedding_json = json.dumps(query_embedding)
            dot_product_expr = func.dot_product(self.table.c.embedding, text("JSON_ARRAY_PACK(:embedding)"))
            stmt = stmt.order_by(dot_product_expr.desc())
            stmt = stmt.params(embedding=embedding_json)
            # stmt = stmt.order_by(self.table.c.embedding.cosine_distance(query_embedding))
        if self.distance == Distance.max_inner_product:
            stmt = stmt.order_by(self.table.c.embedding.max_inner_product(query_embedding))

        stmt = stmt.limit(limit=limit)
        logger.debug(f"Query: {stmt}")

        # Get neighbors
        # This will only work if embedding column is created with `vector` data type.
        with self.Session.begin() as sess:
            neighbors = sess.execute(stmt).fetchall() or []
            #         if self.index is not None:
            #             if isinstance(self.index, Ivfflat):
            #                 # Assuming 'nprobe' is a relevant parameter to be set for the session
            #                 # Update the session settings based on the Ivfflat index configuration
            #                 sess.execute(text(f"SET SESSION nprobe = {self.index.nprobe}"))
            #             elif isinstance(self.index, HNSWFlat):
            #                 # Assuming 'ef_search' is a relevant parameter to be set for the session
            #                 # Update the session settings based on the HNSW index configuration
            #                 sess.execute(text(f"SET SESSION ef_search = {self.index.ef_search}"))

        # Build search results
        search_results: List[Document] = []
        for neighbor in neighbors:
            meta_data_dict = json.loads(neighbor.meta_data) if neighbor.meta_data else {}
            usage_dict = json.loads(neighbor.usage) if neighbor.usage else {}
            # Convert the embedding mysql.TEXT back into a list
            embedding_list = json.loads(neighbor.embedding) if neighbor.embedding else []

            search_results.append(
                Document(
                    name=neighbor.name,
                    meta_data=meta_data_dict,
                    content=neighbor.content,
                    embedder=self.embedder,
                    embedding=embedding_list,
                    usage=usage_dict,
                )
            )

        return search_results

    def delete(self) -> None:
        if self.table_exists():
            logger.debug(f"Deleting table: {self.collection}")
            self.table.drop(self.db_engine)

    def exists(self) -> bool:
        return self.table_exists()

    def get_count(self) -> int:
        with self.Session.begin() as sess:
            stmt = select(func.count(self.table.c.name)).select_from(self.table)
            result = sess.execute(stmt).scalar()
            if result is not None:
                return int(result)
            return 0

    def optimize(self) -> None:
        pass

    def clear(self) -> bool:
        logger.info(f"Deleting table: {self.collection}")
        with self.Session.begin() as sess:
            stmt = self.table.delete()
            sess.execute(stmt)
            return True