from typing import Dict, Any from phi.tools import Toolkit from phi.utils.log import logger try: import pandas as pd except ImportError: raise ImportError("`pandas` not installed. Please install using `pip install pandas`.") class PandasTools(Toolkit): def __init__(self): super().__init__(name="pandas_tools") self.dataframes: Dict[str, pd.DataFrame] = {} self.register(self.create_pandas_dataframe) self.register(self.run_dataframe_operation) def create_pandas_dataframe( self, dataframe_name: str, create_using_function: str, function_parameters: Dict[str, Any] ) -> str: """Creates a pandas dataframe named `dataframe_name` by running a function `create_using_function` with the parameters `function_parameters`. Returns the created dataframe name as a string if successful, otherwise returns an error message. For Example: - To create a dataframe `csv_data` by reading a CSV file, use: {"dataframe_name": "csv_data", "create_using_function": "read_csv", "function_parameters": {"filepath_or_buffer": "data.csv"}} - To create a dataframe `csv_data` by reading a JSON file, use: {"dataframe_name": "json_data", "create_using_function": "read_json", "function_parameters": {"path_or_buf": "data.json"}} :param dataframe_name: The name of the dataframe to create. :param create_using_function: The function to use to create the dataframe. :param function_parameters: The parameters to pass to the function. :return: The name of the created dataframe if successful, otherwise an error message. """ try: logger.debug(f"Creating dataframe: {dataframe_name}") logger.debug(f"Using function: {create_using_function}") logger.debug(f"With parameters: {function_parameters}") if dataframe_name in self.dataframes: return f"Dataframe already exists: {dataframe_name}" # Create the dataframe dataframe = getattr(pd, create_using_function)(**function_parameters) if dataframe is None: return f"Error creating dataframe: {dataframe_name}" if not isinstance(dataframe, pd.DataFrame): return f"Error creating dataframe: {dataframe_name}" if dataframe.empty: return f"Dataframe is empty: {dataframe_name}" self.dataframes[dataframe_name] = dataframe logger.debug(f"Created dataframe: {dataframe_name}") return dataframe_name except Exception as e: logger.error(f"Error creating dataframe: {e}") return f"Error creating dataframe: {e}" def run_dataframe_operation(self, dataframe_name: str, operation: str, operation_parameters: Dict[str, Any]) -> str: """Runs an operation `operation` on a dataframe `dataframe_name` with the parameters `operation_parameters`. Returns the result of the operation as a string if successful, otherwise returns an error message. For Example: - To get the first 5 rows of a dataframe `csv_data`, use: {"dataframe_name": "csv_data", "operation": "head", "operation_parameters": {"n": 5}} - To get the last 5 rows of a dataframe `csv_data`, use: {"dataframe_name": "csv_data", "operation": "tail", "operation_parameters": {"n": 5}} :param dataframe_name: The name of the dataframe to run the operation on. :param operation: The operation to run on the dataframe. :param operation_parameters: The parameters to pass to the operation. :return: The result of the operation if successful, otherwise an error message. """ try: logger.debug(f"Running operation: {operation}") logger.debug(f"On dataframe: {dataframe_name}") logger.debug(f"With parameters: {operation_parameters}") # Get the dataframe dataframe = self.dataframes.get(dataframe_name) # Run the operation result = getattr(dataframe, operation)(**operation_parameters) logger.debug(f"Ran operation: {operation}") try: try: return result.to_string() except AttributeError: return str(result) except Exception: return "Operation ran successfully" except Exception as e: logger.error(f"Error running operation: {e}") return f"Error running operation: {e}"