import json from textwrap import dedent from typing import Optional, List, Iterator, Dict, Any, Mapping, Union from phi.llm.base import LLM from phi.llm.message import Message from phi.tools.function import FunctionCall from phi.utils.log import logger from phi.utils.timer import Timer from phi.utils.tools import ( get_function_call_for_tool_call, extract_tool_call_from_string, remove_tool_calls_from_string, ) try: from ollama import Client as OllamaClient except ImportError: logger.error("`ollama` not installed") raise class Hermes(LLM): name: str = "Hermes2Pro" model: str = "adrienbrault/nous-hermes2pro:Q8_0" host: Optional[str] = None timeout: Optional[Any] = None format: Optional[str] = None options: Optional[Any] = None keep_alive: Optional[Union[float, str]] = None client_kwargs: Optional[Dict[str, Any]] = None ollama_client: Optional[OllamaClient] = None # Maximum number of function calls allowed across all iterations. function_call_limit: int = 5 # After a tool call is run, add the user message as a reminder to the LLM add_user_message_after_tool_call: bool = True @property def client(self) -> OllamaClient: if self.ollama_client: return self.ollama_client _ollama_params: Dict[str, Any] = {} if self.host: _ollama_params["host"] = self.host if self.timeout: _ollama_params["timeout"] = self.timeout if self.client_kwargs: _ollama_params.update(self.client_kwargs) return OllamaClient(**_ollama_params) @property def api_kwargs(self) -> Dict[str, Any]: kwargs: Dict[str, Any] = {} if self.format is not None: kwargs["format"] = self.format elif self.response_format is not None: if self.response_format.get("type") == "json_object": kwargs["format"] = "json" # elif self.functions is not None: # kwargs["format"] = "json" if self.options is not None: kwargs["options"] = self.options if self.keep_alive is not None: kwargs["keep_alive"] = self.keep_alive return kwargs def to_dict(self) -> Dict[str, Any]: _dict = super().to_dict() if self.host: _dict["host"] = self.host if self.timeout: _dict["timeout"] = self.timeout if self.format: _dict["format"] = self.format if self.response_format: _dict["response_format"] = self.response_format return _dict def to_llm_message(self, message: Message) -> Dict[str, Any]: msg = { "role": message.role, "content": message.content, } if message.model_extra is not None and "images" in message.model_extra: msg["images"] = message.model_extra.get("images") return msg def invoke(self, messages: List[Message]) -> Mapping[str, Any]: return self.client.chat( model=self.model, messages=[self.to_llm_message(m) for m in messages], **self.api_kwargs, ) def invoke_stream(self, messages: List[Message]) -> Iterator[Mapping[str, Any]]: yield from self.client.chat( model=self.model, messages=[self.to_llm_message(m) for m in messages], stream=True, **self.api_kwargs, ) # type: ignore def deactivate_function_calls(self) -> None: # Deactivate tool calls by turning off JSON mode after 1 tool call # This is triggered when the function call limit is reached. self.format = "" def response(self, messages: List[Message]) -> str: logger.debug("---------- Hermes Response Start ----------") # -*- Log messages for debugging for m in messages: m.log() response_timer = Timer() response_timer.start() response: Mapping[str, Any] = self.invoke(messages=messages) response_timer.stop() logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s") # logger.debug(f"Ollama response type: {type(response)}") # logger.debug(f"Ollama response: {response}") # -*- Parse response response_message: Mapping[str, Any] = response.get("message") # type: ignore response_role = response_message.get("role") response_content: Optional[str] = response_message.get("content") # -*- Create assistant message assistant_message = Message( role=response_role or "assistant", content=response_content.strip() if response_content is not None else None, ) # Check if the response contains a tool call try: if response_content is not None: if "" in response_content and "" in response_content: # List of tool calls added to the assistant message tool_calls: List[Dict[str, Any]] = [] # Break the response into tool calls tool_call_responses = response_content.split("") for tool_call_response in tool_call_responses: # Add back the closing tag if this is not the last tool call if tool_call_response != tool_call_responses[-1]: tool_call_response += "" if "" in tool_call_response and "" in tool_call_response: # Extract tool call string from response tool_call_content = extract_tool_call_from_string(tool_call_response) # Convert the extracted string to a dictionary try: logger.debug(f"Tool call content: {tool_call_content}") tool_call_dict = json.loads(tool_call_content) except json.JSONDecodeError: raise ValueError(f"Could not parse tool call from: {tool_call_content}") tool_call_name = tool_call_dict.get("name") tool_call_args = tool_call_dict.get("arguments") function_def = {"name": tool_call_name} if tool_call_args is not None: function_def["arguments"] = json.dumps(tool_call_args) tool_calls.append( { "type": "function", "function": function_def, } ) # If tool call parsing is successful, add tool calls to the assistant message if len(tool_calls) > 0: assistant_message.tool_calls = tool_calls except Exception as e: logger.warning(e) pass # -*- Update usage metrics # Add response time to metrics assistant_message.metrics["time"] = response_timer.elapsed if "response_times" not in self.metrics: self.metrics["response_times"] = [] self.metrics["response_times"].append(response_timer.elapsed) # -*- Add assistant message to messages messages.append(assistant_message) assistant_message.log() # -*- Parse and run function call if assistant_message.tool_calls is not None and self.run_tools: # Remove the tool call from the response content final_response = remove_tool_calls_from_string(assistant_message.get_content_string()) function_calls_to_run: List[FunctionCall] = [] for tool_call in assistant_message.tool_calls: _function_call = get_function_call_for_tool_call(tool_call, self.functions) if _function_call is None: messages.append(Message(role="user", content="Could not find function to call.")) continue if _function_call.error is not None: messages.append(Message(role="user", content=_function_call.error)) continue function_calls_to_run.append(_function_call) if self.show_tool_calls: if len(function_calls_to_run) == 1: final_response += f" - Running: {function_calls_to_run[0].get_call_str()}\n\n" elif len(function_calls_to_run) > 1: final_response += "Running:" for _f in function_calls_to_run: final_response += f"\n - {_f.get_call_str()}" final_response += "\n\n" function_call_results = self.run_function_calls(function_calls_to_run, role="user") if len(function_call_results) > 0: fc_responses = [] for _fc_message in function_call_results: fc_responses.append( json.dumps({"name": _fc_message.tool_call_name, "content": _fc_message.content}) ) tool_response_message_content = "\n" + "\n".join(fc_responses) + "\n" messages.append(Message(role="user", content=tool_response_message_content)) for _fc_message in function_call_results: _fc_message.content = ( "\n" + json.dumps({"name": _fc_message.tool_call_name, "content": _fc_message.content}) + "\n" ) messages.append(_fc_message) # Reconfigure messages so the LLM is reminded of the original task if self.add_user_message_after_tool_call: messages = self.add_original_user_message(messages) # -*- Yield new response using results of tool calls final_response += self.response(messages=messages) return final_response logger.debug("---------- Hermes Response End ----------") # -*- Return content if no function calls are present if assistant_message.content is not None: return assistant_message.get_content_string() return "Something went wrong, please try again." def response_stream(self, messages: List[Message]) -> Iterator[str]: logger.debug("---------- Hermes Response Start ----------") # -*- Log messages for debugging for m in messages: m.log() assistant_message_content = "" tool_calls_counter = 0 response_is_tool_call = False is_closing_tool_call_tag = False completion_tokens = 0 response_timer = Timer() response_timer.start() for response in self.invoke_stream(messages=messages): completion_tokens += 1 # -*- Parse response # logger.info(f"Ollama partial response: {response}") # logger.info(f"Ollama partial response type: {type(response)}") response_message: Optional[dict] = response.get("message") response_content = response_message.get("content") if response_message else None # logger.info(f"Ollama partial response content: {response_content}") # Add response content to assistant message if response_content is not None: assistant_message_content += response_content # Detect if response is a tool call # If the response is a tool call, it will start a "): tool_calls_counter -= 1 # If the response is a closing tool call tag and the tool call counter is 0, # tool call response is complete if tool_calls_counter == 0 and response_content.strip().endswith(">"): response_is_tool_call = False # logger.debug(f"Response is tool call: {response_is_tool_call}") is_closing_tool_call_tag = True # -*- Yield content if not a tool call and content is not None if not response_is_tool_call and response_content is not None: if is_closing_tool_call_tag and response_content.strip().endswith(">"): is_closing_tool_call_tag = False continue yield response_content response_timer.stop() logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s") # Strip extra whitespaces assistant_message_content = assistant_message_content.strip() # -*- Create assistant message assistant_message = Message( role="assistant", content=assistant_message_content, ) # Check if the response is a tool call try: if "" in assistant_message_content and "" in assistant_message_content: # List of tool calls added to the assistant message tool_calls: List[Dict[str, Any]] = [] # Break the response into tool calls tool_call_responses = assistant_message_content.split("") for tool_call_response in tool_call_responses: # Add back the closing tag if this is not the last tool call if tool_call_response != tool_call_responses[-1]: tool_call_response += "" if "" in tool_call_response and "" in tool_call_response: # Extract tool call string from response tool_call_content = extract_tool_call_from_string(tool_call_response) # Convert the extracted string to a dictionary try: logger.debug(f"Tool call content: {tool_call_content}") tool_call_dict = json.loads(tool_call_content) except json.JSONDecodeError: raise ValueError(f"Could not parse tool call from: {tool_call_content}") tool_call_name = tool_call_dict.get("name") tool_call_args = tool_call_dict.get("arguments") function_def = {"name": tool_call_name} if tool_call_args is not None: function_def["arguments"] = json.dumps(tool_call_args) tool_calls.append( { "type": "function", "function": function_def, } ) # If tool call parsing is successful, add tool calls to the assistant message if len(tool_calls) > 0: assistant_message.tool_calls = tool_calls except Exception: logger.warning(f"Could not parse tool calls from response: {assistant_message_content}") pass # -*- Update usage metrics # Add response time to metrics assistant_message.metrics["time"] = response_timer.elapsed if "response_times" not in self.metrics: self.metrics["response_times"] = [] self.metrics["response_times"].append(response_timer.elapsed) # -*- Add assistant message to messages messages.append(assistant_message) assistant_message.log() # -*- Parse and run function call if assistant_message.tool_calls is not None and self.run_tools: function_calls_to_run: List[FunctionCall] = [] for tool_call in assistant_message.tool_calls: _function_call = get_function_call_for_tool_call(tool_call, self.functions) if _function_call is None: messages.append(Message(role="user", content="Could not find function to call.")) continue if _function_call.error is not None: messages.append(Message(role="user", content=_function_call.error)) continue function_calls_to_run.append(_function_call) if self.show_tool_calls: if len(function_calls_to_run) == 1: yield f"- Running: {function_calls_to_run[0].get_call_str()}\n\n" elif len(function_calls_to_run) > 1: yield "Running:" for _f in function_calls_to_run: yield f"\n - {_f.get_call_str()}" yield "\n\n" function_call_results = self.run_function_calls(function_calls_to_run, role="user") # Add results of the function calls to the messages if len(function_call_results) > 0: fc_responses = [] for _fc_message in function_call_results: fc_responses.append( json.dumps({"name": _fc_message.tool_call_name, "content": _fc_message.content}) ) tool_response_message_content = "\n" + "\n".join(fc_responses) + "\n" messages.append(Message(role="user", content=tool_response_message_content)) # Reconfigure messages so the LLM is reminded of the original task if self.add_user_message_after_tool_call: messages = self.add_original_user_message(messages) # -*- Yield new response using results of tool calls yield from self.response_stream(messages=messages) logger.debug("---------- Hermes Response End ----------") def add_original_user_message(self, messages: List[Message]) -> List[Message]: # Add the original user message to the messages to remind the LLM of the original task original_user_message_content = None for m in messages: if m.role == "user": original_user_message_content = m.content break if original_user_message_content is not None: _content = ( "Using the tool_response above, respond to the original user message:" f"\n\n\n{original_user_message_content}\n" ) messages.append(Message(role="user", content=_content)) return messages def get_instructions_to_generate_tool_calls(self) -> List[str]: if self.functions is not None: return [ "At the very first turn you don't have so you shouldn't not make up the results.", "To respond to the users message, you can use only one tool at a time.", "When using a tool, only respond with the tool call. Nothing else. Do not add any additional notes, explanations or white space.", "Do not stop calling functions until the task has been accomplished or you've reached max iteration of 10.", ] return [] def get_tool_call_prompt(self) -> Optional[str]: if self.functions is not None and len(self.functions) > 0: tool_call_prompt = dedent( """\ You are a function calling AI model with self-recursion. You are provided with function signatures within XML tags. You can call only one function at a time to achieve your task. You may use agentic frameworks for reasoning and planning to help with user query. Please call a function and wait for function results to be provided to you in the next iteration. Don't make assumptions about what values to plug into functions. Once you have called a function, results will be provided to you within XML tags. Do not make assumptions about tool results if XML tags are not present since the function is not yet executed. Analyze the results once you get them and call another function if needed. Your final response should directly answer the user query with an analysis or summary of the results of function calls. """ ) tool_call_prompt += "\nHere are the available tools:" tool_call_prompt += "\n\n" tool_definitions: List[str] = [] for _f_name, _function in self.functions.items(): _function_def = _function.get_definition_for_prompt() if _function_def: tool_definitions.append(_function_def) tool_call_prompt += "\n".join(tool_definitions) tool_call_prompt += "\n\n\n" tool_call_prompt += dedent( """\ Use the following pydantic model json schema for each tool call you will make: {'title': 'FunctionCall', 'type': 'object', 'properties': {'arguments': {'title': 'Arguments', 'type': 'object'}, 'name': {'title': 'Name', 'type': 'string'}}, 'required': ['arguments', 'name']} For each function call return a json object with function name and arguments within XML tags as follows: {"arguments": , "name": } \n """ ) return tool_call_prompt return None def get_system_prompt_from_llm(self) -> Optional[str]: return self.get_tool_call_prompt() def get_instructions_from_llm(self) -> Optional[List[str]]: return self.get_instructions_to_generate_tool_calls()