Spaces:
Sleeping
Sleeping
uploaded some files
Browse files- HuggingChatAPI.py +212 -0
- exportchat.py +55 -0
- promptTemplate.py +91 -0
- requirements.txt +20 -0
HuggingChatAPI.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from hugchat import hugchat
|
2 |
+
|
3 |
+
import time
|
4 |
+
|
5 |
+
from typing import Any, List, Mapping, Optional
|
6 |
+
|
7 |
+
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
8 |
+
from langchain.llms.base import LLM
|
9 |
+
|
10 |
+
|
11 |
+
# THIS IS A CUSTOM LLM WRAPPER Based on hugchat library
|
12 |
+
# Reference :
|
13 |
+
# - Langchain custom LLM wrapper : https://python.langchain.com/docs/modules/model_io/models/llms/how_to/custom_llm
|
14 |
+
# - HugChat library : https://github.com/Soulter/hugging-chat-api
|
15 |
+
# - I am Alessandro Ciciarelli the owner of IntelligenzaArtificialeItalia.net , my dream is to democratize AI and make it accessible to everyone.
|
16 |
+
|
17 |
+
class HuggingChat(LLM):
|
18 |
+
|
19 |
+
"""HuggingChat LLM wrapper."""
|
20 |
+
|
21 |
+
chatbot : Optional[hugchat.ChatBot] = None
|
22 |
+
|
23 |
+
|
24 |
+
email: Optional[str] = None
|
25 |
+
psw: Optional[str] = None
|
26 |
+
cookie_path : Optional[str] = None
|
27 |
+
|
28 |
+
conversation : Optional[str] = None
|
29 |
+
model: Optional[int] = 0 # 0 = OpenAssistant/oasst-sft-6-llama-30b-xor , 1 = meta-llama/Llama-2-70b-chat-hf
|
30 |
+
|
31 |
+
temperature: Optional[float] = 0.9
|
32 |
+
top_p: Optional[float] = 0.95
|
33 |
+
repetition_penalty: Optional[float] = 1.2
|
34 |
+
top_k: Optional[int] = 50
|
35 |
+
truncate: Optional[int] = 1024
|
36 |
+
watermark: Optional[bool] = False
|
37 |
+
max_new_tokens: Optional[int] = 1024
|
38 |
+
stop: Optional[list] = ["</s>"]
|
39 |
+
return_full_text: Optional[bool] = False
|
40 |
+
stream_resp: Optional[bool] = True
|
41 |
+
use_cache: Optional[bool] = False
|
42 |
+
is_retry: Optional[bool] = False
|
43 |
+
retry_count: Optional[int] = 5
|
44 |
+
|
45 |
+
avg_response_time: float = 0.0
|
46 |
+
log : Optional[bool] = False
|
47 |
+
|
48 |
+
|
49 |
+
@property
|
50 |
+
def _llm_type(self) -> str:
|
51 |
+
return "🤗CUSTOM LLM WRAPPER Based on hugging-chat-api library"
|
52 |
+
|
53 |
+
|
54 |
+
def create_chatbot(self) -> None:
|
55 |
+
if not any([self.email, self.psw, self.cookie_path]):
|
56 |
+
raise ValueError("email, psw, or cookie_path is required.")
|
57 |
+
|
58 |
+
try:
|
59 |
+
if self.email and self.psw:
|
60 |
+
# Create a ChatBot using email and psw
|
61 |
+
from hugchat.login import Login
|
62 |
+
start_time = time.time()
|
63 |
+
sign = Login(self.email, self.psw)
|
64 |
+
cookies = sign.login()
|
65 |
+
end_time = time.time()
|
66 |
+
if self.log : print(f"\n[LOG] Login successfull in {round(end_time - start_time)} seconds")
|
67 |
+
else:
|
68 |
+
# Create a ChatBot using cookie_path
|
69 |
+
cookies = self.cookie_path and hugchat.ChatBot(cookie_path=self.cookie_path)
|
70 |
+
|
71 |
+
self.chatbot = cookies.get_dict() and hugchat.ChatBot(cookies=cookies.get_dict())
|
72 |
+
if self.log : print(f"[LOG] LLM WRAPPER created successfully")
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
raise ValueError("LogIn failed. Please check your credentials or cookie_path. " + str(e))
|
76 |
+
|
77 |
+
# Setup ChatBot info
|
78 |
+
self.chatbot.switch_llm(self.model)
|
79 |
+
if self.log : print(f"[LOG] LLM WRAPPER switched to model { 'OpenAssistant/oasst-sft-6-llama-30b-xor' if self.model == 0 else 'meta-llama/Llama-2-70b-chat-hf'}")
|
80 |
+
|
81 |
+
self.conversation = self.conversation or self.chatbot.new_conversation()
|
82 |
+
self.chatbot.change_conversation(self.conversation)
|
83 |
+
if self.log : print(f"[LOG] LLM WRAPPER changed conversation to {self.conversation}\n")
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
def _call(
|
88 |
+
self,
|
89 |
+
prompt: str,
|
90 |
+
stop: Optional[List[str]] = None,
|
91 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
92 |
+
**kwargs: Any,
|
93 |
+
) -> str:
|
94 |
+
if stop:
|
95 |
+
raise ValueError("stop kwargs are not permitted.")
|
96 |
+
|
97 |
+
self.create_chatbot() if not self.chatbot else None
|
98 |
+
|
99 |
+
try:
|
100 |
+
if self.log : print(f"[LOG] LLM WRAPPER called with prompt: {prompt}")
|
101 |
+
start_time = time.time()
|
102 |
+
resp = self.chatbot.chat(
|
103 |
+
prompt,
|
104 |
+
temperature=self.temperature,
|
105 |
+
top_p=self.top_p,
|
106 |
+
repetition_penalty=self.repetition_penalty,
|
107 |
+
top_k=self.top_k,
|
108 |
+
truncate=self.truncate,
|
109 |
+
watermark=self.watermark,
|
110 |
+
max_new_tokens=self.max_new_tokens,
|
111 |
+
stop=self.stop,
|
112 |
+
return_full_text=self.return_full_text,
|
113 |
+
stream=self.stream_resp,
|
114 |
+
use_cache=self.use_cache,
|
115 |
+
is_retry=self.is_retry,
|
116 |
+
retry_count=self.retry_count,
|
117 |
+
)
|
118 |
+
|
119 |
+
end_time = time.time()
|
120 |
+
|
121 |
+
self.avg_response_time = (self.avg_response_time + (end_time - start_time)) / 2 if self.avg_response_time else end_time - start_time
|
122 |
+
|
123 |
+
if self.log : print(f"[LOG] LLM WRAPPER response time: {round(end_time - start_time)} seconds")
|
124 |
+
if self.log : print(f"[LOG] LLM WRAPPER avg response time: {round(self.avg_response_time)} seconds")
|
125 |
+
if self.log : print(f"[LOG] LLM WRAPPER response: {resp}\n\n")
|
126 |
+
|
127 |
+
return str(resp)
|
128 |
+
|
129 |
+
except Exception as e:
|
130 |
+
raise ValueError("ChatBot failed, please check your parameters. " + str(e))
|
131 |
+
|
132 |
+
@property
|
133 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
134 |
+
"""Get the identifying parameters."""
|
135 |
+
parms = {
|
136 |
+
"model": "HuggingChat",
|
137 |
+
"temperature": self.temperature,
|
138 |
+
"top_p": self.top_p,
|
139 |
+
"repetition_penalty": self.repetition_penalty,
|
140 |
+
"top_k": self.top_k,
|
141 |
+
"truncate": self.truncate,
|
142 |
+
"watermark": self.watermark,
|
143 |
+
"max_new_tokens": self.max_new_tokens,
|
144 |
+
"stop": self.stop,
|
145 |
+
"return_full_text": self.return_full_text,
|
146 |
+
"stream": self.stream_resp,
|
147 |
+
"use_cache": self.use_cache,
|
148 |
+
"is_retry": self.is_retry,
|
149 |
+
"retry_count": self.retry_count,
|
150 |
+
"avg_response_time": self.avg_response_time,
|
151 |
+
}
|
152 |
+
return parms
|
153 |
+
|
154 |
+
@property
|
155 |
+
def _get_avg_response_time(self) -> float:
|
156 |
+
"""Get the average response time."""
|
157 |
+
return self.avg_response_time
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
#HOW TO USE IT
|
162 |
+
# 1) Install the library : pip install -U hugchat langchain
|
163 |
+
# 2) Get your HuggingFace credentials : https://huggingface.co/
|
164 |
+
# 3) Import the library and enjoy it : from HCA import HCA
|
165 |
+
|
166 |
+
# EXAMPLE 1 : Using email and psw
|
167 |
+
# llm = HCA(email="YOUR_EMAIL", psw="YOUR_psw")
|
168 |
+
|
169 |
+
# EXAMPLE 2 : Using cookie file
|
170 |
+
# llm = HCA(cookie_path="YOUR_COOKIE_PATH")
|
171 |
+
|
172 |
+
# EXAMPLE 3 : Modify the default parameters
|
173 |
+
# llm = HCA(email="YOUR_EMAIL", psw="YOUR_psw", log=True , model=1, temperature=0.9, top_p=0.95, repetition_penalty=1.2, top_k=50, truncate=1024, watermark=False, max_new_tokens=1024, stop=["</s>"], return_full_text=False, stream=True, use_cache=False, is_retry=False, retry_count=5)
|
174 |
+
|
175 |
+
# EXAMPLE 4 : Using the LLM
|
176 |
+
# print(llm("Hello, how are you?"))
|
177 |
+
|
178 |
+
|
179 |
+
# EXAMPLE 5 : simple use
|
180 |
+
# from HCA import HCA
|
181 |
+
#llm = HCA(email="YOUR_EMAIL", psw="YOUR_psw" , log=True, model=1)
|
182 |
+
#txt = input("\n\nYou (write 'exit' for stop): ")
|
183 |
+
#while txt != "exit":
|
184 |
+
#print("Bot : " + llm(txt) + "\n")
|
185 |
+
#print("Avg response time : " + str(llm._get_avg_response_time))
|
186 |
+
#txt = input("You : ")
|
187 |
+
|
188 |
+
|
189 |
+
|
190 |
+
#from hugchat import hugchat
|
191 |
+
#from hugchat.login import Login
|
192 |
+
#from langchain.llms.base import LLM
|
193 |
+
#from typing import Optional, List, Mapping, Any
|
194 |
+
#from time import sleep
|
195 |
+
|
196 |
+
|
197 |
+
# THIS IS A CUSTOM LLM WRAPPER Based on hugchat library
|
198 |
+
# Reference :
|
199 |
+
# - Langchain custom LLM wrapper : https://python.langchain.com/docs/modules/model_io/models/llms/how_to/custom_llm
|
200 |
+
# - HugChat library : https://github.com/Soulter/hugging-chat-api
|
201 |
+
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
#llm = HuggingChat(email = "YOUR-EMAIL" , psw = = "YOUR-PSW" ) #for start new chat
|
207 |
+
|
208 |
+
|
209 |
+
#print(llm("Hello, how are you?"))
|
210 |
+
#print(llm("what is AI?"))
|
211 |
+
#print(llm("Can you resume your previus answer?")) #now memory work well
|
212 |
+
|
exportchat.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
PYTHON FILE FOR EXPORT CHAT FUNCTION
|
3 |
+
"""
|
4 |
+
|
5 |
+
import streamlit as st
|
6 |
+
from datetime import datetime
|
7 |
+
|
8 |
+
|
9 |
+
def export_chat():
|
10 |
+
if 'generated' in st.session_state:
|
11 |
+
# save message in reverse order frist message always bot
|
12 |
+
# the chat is stored in a html file format
|
13 |
+
html_chat = ""
|
14 |
+
html_chat += '<html><head><title>ChatBOT Intelligenza Artificiale Italia 🧠🤖🇮🇹</title>'
|
15 |
+
# create two simply css box for bot and user like whatsapp
|
16 |
+
html_chat += '<style> .bot { background-color: #e5e5ea; padding: 10px; border-radius: 10px; margin: 10px; width: 50%; float: left; } .user { background-color: #dcf8c6; padding: 10px; border-radius: 10px; margin: 10px; width: 50%; float: right; } </style>'
|
17 |
+
html_chat += '</head><body>'
|
18 |
+
# add header
|
19 |
+
html_chat += '<center><h1>ChatBOT Intelligenza Artificiale Italia 🧠🤖🇮🇹</h1>'
|
20 |
+
# add link for danation
|
21 |
+
html_chat += '<h3>🤗 Support the project with a donation for the development of new features 🤗</h3>'
|
22 |
+
html_chat += '<br><a href="https://rebrand.ly/SupportAUTOGPTfree"><img src="https://www.paypalobjects.com/en_US/i/btn/btn_donateCC_LG.gif" alt="PayPal donate button" /></a>'
|
23 |
+
# add subheader with date and time
|
24 |
+
html_chat += '<br><br><h5>' + datetime.now().strftime("%d/%m/%Y %H:%M:%S") + \
|
25 |
+
'</h5></center><br><br>'
|
26 |
+
# add chat
|
27 |
+
# add solid container
|
28 |
+
html_chat += '<div style="padding: 10px; border-radius: 10px; margin: 10px; width: 100%; float: left;">'
|
29 |
+
for i in range(len(st.session_state['generated'])-1, -1, -1):
|
30 |
+
html_chat += '<div class="bot">' + \
|
31 |
+
st.session_state["generated"][i] + '</div><br>'
|
32 |
+
html_chat += '<div class="user">' + \
|
33 |
+
st.session_state['past'][i] + '</div><br>'
|
34 |
+
html_chat += '</div>'
|
35 |
+
# add footer
|
36 |
+
html_chat += '<br><br><center><small>Thanks you for using our ChatBOT 🧠🤖🇮🇹</small>'
|
37 |
+
# add link for danation
|
38 |
+
html_chat += '<h6>🤗 Support the project with a donation for the development of new features 🤗</h6>'
|
39 |
+
html_chat += '<br><a href="https://rebrand.ly/SupportAUTOGPTfree"><img src="https://www.paypalobjects.com/en_US/i/btn/btn_donateCC_LG.gif" alt="PayPal donate button" /></a><center>'
|
40 |
+
|
41 |
+
html_chat += '</body></html>'
|
42 |
+
|
43 |
+
# save file
|
44 |
+
# with open('chat.html', 'w') as f:
|
45 |
+
# f.write(html_chat)
|
46 |
+
|
47 |
+
with open('chat.html', 'wb') as f:
|
48 |
+
f.write(html_chat.encode('utf-8'))
|
49 |
+
# download file
|
50 |
+
st.download_button(
|
51 |
+
label="📚 Download chat",
|
52 |
+
data=html_chat,
|
53 |
+
file_name='chat.html',
|
54 |
+
mime='text/html'
|
55 |
+
)
|
promptTemplate.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file contains the template for the prompt to be used for injecting the context into the model.
|
3 |
+
|
4 |
+
With this technique we can use different plugin for different type of question and answer.
|
5 |
+
Like :
|
6 |
+
- Internet
|
7 |
+
- Data
|
8 |
+
- Code
|
9 |
+
- PDF
|
10 |
+
- Audio
|
11 |
+
- Video
|
12 |
+
|
13 |
+
"""
|
14 |
+
|
15 |
+
from datetime import datetime
|
16 |
+
now = datetime.now()
|
17 |
+
|
18 |
+
# def prompt4conversation(prompt,context):
|
19 |
+
# final_prompt = f""" GENERAL INFORMATION : ( today is {now.strftime("%d/%m/%Y %H:%M:%S")} , You are a friendly helpful assistant.
|
20 |
+
# ISTRUCTION : IN YOUR ANSWER NEVER INCLUDE THE USER QUESTION or MESSAGE , WRITE ALWAYS ONLY YOUR ACCURATE ANSWER!
|
21 |
+
# PREVIUS MESSAGE : ({context})
|
22 |
+
# NOW THE USER ASK : {prompt} .
|
23 |
+
# WRITE THE ANSWER :"""
|
24 |
+
# return final_prompt
|
25 |
+
|
26 |
+
def prompt4conversation(prompt,context):
|
27 |
+
final_prompt = f""" GENERAL INFORMATION : ( today is {now.strftime("%d/%m/%Y %H:%M:%S")} ,
|
28 |
+
PREVIUS MESSAGE : ({context})
|
29 |
+
NOW THE USER ASK : {prompt} .
|
30 |
+
WRITE THE ANSWER :"""
|
31 |
+
return final_prompt
|
32 |
+
|
33 |
+
def prompt4conversationInternet(prompt,context, internet, resume):
|
34 |
+
final_prompt = f""" GENERAL INFORMATION : ( today is {now.strftime("%d/%m/%Y %H:%M:%S")} ,
|
35 |
+
PREVIUS MESSAGE : ({context})
|
36 |
+
NOW THE USER ASK : {prompt}.
|
37 |
+
INTERNET RESULT TO USE TO ANSWER : ({internet})
|
38 |
+
INTERNET RESUME : ({resume})
|
39 |
+
NOW THE USER ASK : {prompt}.
|
40 |
+
WRITE THE FRIENDLY ANSWER BASED ON INTERNET INFORMATION :"""
|
41 |
+
return final_prompt
|
42 |
+
|
43 |
+
def prompt4Data(prompt, context, solution):
|
44 |
+
final_prompt = f""" ISTRUCTION : IN YOUR ANSWER NEVER INCLUDE THE USER QUESTION or MESSAGE , YOU MUST MAKE THE CORRECT ANSWER MORE ARGUMENTED ! IF THE CORRECT ANSWER CONTAINS CODE YOU ARE OBLIGED TO INSERT IT IN YOUR NEW ANSWER!
|
45 |
+
PREVIUS MESSAGE : ({context})
|
46 |
+
NOW THE USER ASK : {prompt}
|
47 |
+
THIS IS THE CORRECT ANSWER : ({solution})
|
48 |
+
MAKE THE ANSWER MORE ARGUMENTED, WITHOUT CHANGING ANYTHING OF THE CORRECT ANSWER :"""
|
49 |
+
return final_prompt
|
50 |
+
|
51 |
+
def prompt4Code(prompt, context, solution):
|
52 |
+
final_prompt = f""" ISTRUCTION : IN YOUR ANSWER NEVER INCLUDE THE USER QUESTION or MESSAGE , THE CORRECT ANSWER CONTAINS CODE YOU ARE OBLIGED TO INSERT IT IN YOUR NEW ANSWER!
|
53 |
+
PREVIUS MESSAGE : ({context})
|
54 |
+
NOW THE USER ASK : {prompt}
|
55 |
+
THIS IS THE CODE FOR THE ANSWER : ({solution})
|
56 |
+
WITHOUT CHANGING ANYTHING OF THE CODE of CORRECT ANSWER , MAKE THE ANSWER MORE DETALIED INCLUDING THE CORRECT CODE :"""
|
57 |
+
return final_prompt
|
58 |
+
|
59 |
+
|
60 |
+
def prompt4Context(prompt, context, solution):
|
61 |
+
final_prompt = f""" ISTRUCTION : IN YOUR ANSWER NEVER INCLUDE THE USER QUESTION or MESSAGE ,WRITE ALWAYS ONLY YOUR ACCURATE ANSWER!
|
62 |
+
PREVIUS MESSAGE : ({context})
|
63 |
+
NOW THE USER ASK : {prompt}
|
64 |
+
THIS IS THE CORRECT ANSWER : ({solution})
|
65 |
+
WITHOUT CHANGING ANYTHING OF CORRECT ANSWER , MAKE THE ANSWER MORE DETALIED:"""
|
66 |
+
return final_prompt
|
67 |
+
|
68 |
+
|
69 |
+
def prompt4Audio(prompt, context, solution):
|
70 |
+
final_prompt = f""" ISTRUCTION : IN YOUR ANSWER NEVER INCLUDE THE USER QUESTION or MESSAGE ,WRITE ALWAYS ONLY YOUR ACCURATE ANSWER!
|
71 |
+
PREVIUS MESSAGE : ({context})
|
72 |
+
NOW THE USER ASK : {prompt}
|
73 |
+
THIS IS THE CORRECT ANSWER based on Audio text gived in input : ({solution})
|
74 |
+
WITHOUT CHANGING ANYTHING OF CORRECT ANSWER , MAKE THE ANSWER MORE DETALIED:"""
|
75 |
+
return final_prompt
|
76 |
+
|
77 |
+
def prompt4YT(prompt, context, solution):
|
78 |
+
final_prompt = f""" ISTRUCTION : IN YOUR ANSWER NEVER INCLUDE THE USER QUESTION or MESSAGE ,WRITE ALWAYS ONLY YOUR ACCURATE ANSWER!
|
79 |
+
PREVIUS MESSAGE : ({context})
|
80 |
+
NOW THE USER ASK : {prompt}
|
81 |
+
THIS IS THE CORRECT ANSWER based on Youtube video gived in input : ({solution})
|
82 |
+
WITHOUT CHANGING ANYTHING OF CORRECT ANSWER , MAKE THE ANSWER MORE DETALIED:"""
|
83 |
+
return final_prompt
|
84 |
+
|
85 |
+
|
86 |
+
#HOW TO ADD YOUR OWN PROMPT :
|
87 |
+
# 1) ADD YOUR FUNCTION HERE, for example : def prompt4Me(prompt, context):
|
88 |
+
# 2) WRITE THE PROMPT TEMPLATE FOR YOUR FUNCTION, for example : template = f"YOU IS : {context} , NOW THE USER ASK : {prompt} . WRITE THE ANSWER :"
|
89 |
+
# 3) RETURN THE TEMPLATE, for example : return template
|
90 |
+
# 4) IMPORT YOUR FUNCTION IN THE MAIN FILE (streamlit_app.py) , for example : from promptTemplate import prompt4Me
|
91 |
+
# 5) FOLLOW OTHER SPTEP IN THE MAIN FILE (streamlit_app.py)
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
beautifulsoup4==4.12.2
|
2 |
+
docx2txt==0.8
|
3 |
+
sketch==0.4.2
|
4 |
+
hugchat
|
5 |
+
langchain
|
6 |
+
streamlit==1.24.0
|
7 |
+
streamlit_extras==0.2.7
|
8 |
+
pandas==2.0.1
|
9 |
+
pdfplumber==0.9.0
|
10 |
+
pydub==0.25.1
|
11 |
+
requests
|
12 |
+
urllib3
|
13 |
+
duckduckgo_search
|
14 |
+
SpeechRecognition==3.8.1
|
15 |
+
youtube_search_python==1.6.6
|
16 |
+
youtube_transcript_api==0.6.1
|
17 |
+
chromadb==0.4.24
|
18 |
+
ffmpeg-python
|
19 |
+
ffprobe
|
20 |
+
huggingface_hub
|