Spaces:
Sleeping
Sleeping
add more URL support
Browse files- app.py +278 -408
- audio_extractor.py +426 -35
- requirements.txt +2 -3
app.py
CHANGED
@@ -4,516 +4,386 @@ import plotly.express as px
|
|
4 |
import plotly.graph_objects as go
|
5 |
from plotly.subplots import make_subplots
|
6 |
import time
|
7 |
-
import
|
8 |
-
from
|
9 |
-
import
|
10 |
-
|
11 |
|
12 |
-
# Import your
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Page configuration
|
16 |
st.set_page_config(
|
17 |
-
page_title="🎤
|
18 |
page_icon="🎤",
|
19 |
layout="wide",
|
20 |
initial_sidebar_state="expanded"
|
21 |
)
|
22 |
|
23 |
-
# Custom CSS for
|
24 |
st.markdown("""
|
25 |
<style>
|
26 |
.main-header {
|
27 |
-
background: linear-gradient(90deg, #667eea 0%, #764ba2 100%);
|
28 |
-
padding: 2rem;
|
29 |
-
border-radius: 10px;
|
30 |
-
color: white;
|
31 |
text-align: center;
|
|
|
|
|
|
|
32 |
margin-bottom: 2rem;
|
33 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
34 |
}
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
border-radius: 10px;
|
40 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
41 |
margin: 0.5rem 0;
|
42 |
-
border-left: 4px solid #667eea;
|
43 |
}
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
margin: 1rem 0;
|
51 |
-
border: 1px solid #e0e6ed;
|
52 |
-
}
|
53 |
-
|
54 |
-
.accent-tag {
|
55 |
-
display: inline-block;
|
56 |
-
padding: 0.3rem 0.8rem;
|
57 |
-
margin: 0.2rem;
|
58 |
-
border-radius: 20px;
|
59 |
-
font-weight: bold;
|
60 |
-
font-size: 0.9rem;
|
61 |
-
}
|
62 |
-
|
63 |
-
.accent-primary {
|
64 |
-
background: linear-gradient(45deg, #667eea, #764ba2);
|
65 |
-
color: white;
|
66 |
-
}
|
67 |
-
|
68 |
-
.accent-secondary {
|
69 |
-
background: linear-gradient(45deg, #ffecd2, #fcb69f);
|
70 |
-
color: #333;
|
71 |
-
}
|
72 |
-
|
73 |
-
.processing-animation {
|
74 |
-
display: flex;
|
75 |
-
justify-content: center;
|
76 |
-
align-items: center;
|
77 |
-
padding: 2rem;
|
78 |
}
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
.chunk-result {
|
88 |
-
background: #f8f9fa;
|
89 |
-
border-left: 4px solid #28a745;
|
90 |
-
padding: 0.8rem;
|
91 |
-
margin: 0.3rem 0;
|
92 |
-
border-radius: 5px;
|
93 |
-
}
|
94 |
-
|
95 |
-
.chunk-result.low-confidence {
|
96 |
-
border-left-color: #ffc107;
|
97 |
}
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
color:
|
102 |
padding: 1rem;
|
103 |
-
border-radius:
|
104 |
-
margin
|
105 |
}
|
106 |
</style>
|
107 |
""", unsafe_allow_html=True)
|
108 |
|
109 |
-
def
|
110 |
-
"""
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
for pattern in youtube_patterns:
|
118 |
-
if re.match(pattern, url):
|
119 |
-
return True
|
120 |
-
return False
|
121 |
|
122 |
-
def
|
123 |
-
"""
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
'steps': [
|
134 |
-
{'range': [0, 50], 'color': "lightgray"},
|
135 |
-
{'range': [50, 80], 'color': "yellow"},
|
136 |
-
{'range': [80, 100], 'color': "green"}
|
137 |
-
],
|
138 |
-
'threshold': {
|
139 |
-
'line': {'color': "red", 'width': 4},
|
140 |
-
'thickness': 0.75,
|
141 |
-
'value': 90
|
142 |
-
}
|
143 |
-
}
|
144 |
-
))
|
145 |
-
|
146 |
-
fig.update_layout(height=300, margin=dict(l=20, r=20, t=40, b=20))
|
147 |
-
return fig
|
148 |
|
149 |
-
def
|
150 |
-
"""Create
|
151 |
-
if not
|
152 |
return None
|
153 |
-
|
154 |
-
accents = list(accent_counts.keys())
|
155 |
-
counts = list(accent_counts.values())
|
156 |
-
|
157 |
-
fig = px.pie(
|
158 |
-
values=counts,
|
159 |
-
names=accents,
|
160 |
-
title=title,
|
161 |
-
color_discrete_sequence=px.colors.qualitative.Set3
|
162 |
-
)
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
fig.update_layout(
|
171 |
-
|
172 |
-
|
173 |
-
|
|
|
174 |
)
|
175 |
|
176 |
return fig
|
177 |
|
178 |
-
def
|
179 |
-
"""Create
|
180 |
-
if not
|
181 |
return None
|
182 |
-
|
183 |
-
df = pd.DataFrame(chunk_results)
|
184 |
-
|
185 |
-
fig = px.line(
|
186 |
-
df,
|
187 |
-
x='chunk',
|
188 |
-
y='confidence',
|
189 |
-
title='Confidence Score Across Audio Chunks',
|
190 |
-
markers=True,
|
191 |
-
color='accent',
|
192 |
-
hover_data=['accent', 'is_confident']
|
193 |
-
)
|
194 |
|
195 |
-
|
196 |
-
|
197 |
|
198 |
-
fig.
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
)
|
|
|
204 |
|
205 |
return fig
|
206 |
|
207 |
-
def
|
208 |
-
"""
|
209 |
-
if not
|
|
|
|
|
210 |
return
|
211 |
|
212 |
-
|
213 |
-
st.markdown("
|
|
|
214 |
|
215 |
# Key metrics
|
216 |
col1, col2, col3, col4 = st.columns(4)
|
217 |
|
218 |
with col1:
|
219 |
-
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
220 |
st.metric(
|
221 |
-
"🎯
|
222 |
-
|
223 |
-
f"{
|
224 |
)
|
225 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
226 |
|
227 |
with col2:
|
228 |
-
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
229 |
st.metric(
|
230 |
-
"
|
231 |
-
f"{
|
232 |
-
|
233 |
)
|
234 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
235 |
|
236 |
with col3:
|
237 |
-
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
238 |
st.metric(
|
239 |
-
"
|
240 |
-
|
241 |
-
f"
|
242 |
)
|
243 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
244 |
|
245 |
with col4:
|
246 |
-
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
247 |
-
early_stopped_text = "Yes ⚡" if result.get('early_stopped') else "No 🔄"
|
248 |
st.metric(
|
249 |
-
"
|
250 |
-
|
251 |
-
f"
|
252 |
)
|
253 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
254 |
|
255 |
-
|
|
|
256 |
|
257 |
-
#
|
258 |
-
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
# Accent distribution (confident predictions)
|
266 |
-
if result.get('confident_accent_counts'):
|
267 |
-
pie_fig = create_accent_distribution_chart(
|
268 |
-
result['confident_accent_counts'],
|
269 |
-
"Confident Predictions Distribution"
|
270 |
-
)
|
271 |
-
if pie_fig:
|
272 |
-
st.plotly_chart(pie_fig, use_container_width=True)
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
if not chunk_results:
|
293 |
-
return
|
294 |
|
295 |
-
|
|
|
|
|
|
|
296 |
|
297 |
# Summary statistics
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
confidence = result['confidence']
|
313 |
-
is_confident = result.get('is_confident', confidence > confidence_threshold)
|
314 |
-
|
315 |
-
confidence_emoji = "✅" if is_confident else "⚠️"
|
316 |
-
confidence_class = "" if is_confident else "low-confidence"
|
317 |
-
|
318 |
-
st.markdown(f"""
|
319 |
-
<div class="chunk-result {confidence_class}">
|
320 |
-
<strong>Chunk {result['chunk']}</strong> {confidence_emoji}<br>
|
321 |
-
<strong>Accent:</strong> {result['accent']}<br>
|
322 |
-
<strong>Confidence:</strong> {confidence:.3f} ({confidence*100:.1f}%)<br>
|
323 |
-
<strong>Status:</strong> {'Confident' if is_confident else 'Low Confidence'}
|
324 |
-
</div>
|
325 |
-
""", unsafe_allow_html=True)
|
326 |
|
327 |
def main():
|
|
|
|
|
|
|
328 |
# Header
|
329 |
-
st.markdown(""
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
""", unsafe_allow_html=True)
|
344 |
-
|
345 |
-
confidence_threshold = st.slider(
|
346 |
-
"🎯 Confidence Threshold",
|
347 |
-
min_value=0.1,
|
348 |
-
max_value=0.9,
|
349 |
-
value=0.6,
|
350 |
-
step=0.05,
|
351 |
-
help="Only predictions above this confidence level are considered reliable"
|
352 |
-
)
|
353 |
-
|
354 |
-
early_stopping_threshold = st.slider(
|
355 |
-
"⚡ Early Stopping Threshold",
|
356 |
-
min_value=2,
|
357 |
-
max_value=10,
|
358 |
-
value=3,
|
359 |
-
help="Stop processing after this many consecutive confident predictions"
|
360 |
-
)
|
361 |
-
|
362 |
-
st.markdown("---")
|
363 |
-
|
364 |
-
st.markdown("""
|
365 |
-
### 📋 Supported Formats
|
366 |
-
- YouTube videos
|
367 |
-
- YouTube Shorts
|
368 |
-
- YouTube Music
|
369 |
-
- Youtu.be links
|
370 |
-
|
371 |
-
### ⚙️ How it works
|
372 |
-
1. **Audio Extraction**: Extracts audio from video
|
373 |
-
2. **Chunking**: Splits audio into manageable segments
|
374 |
-
3. **AI Analysis**: Uses SpeechBrain model for accent detection
|
375 |
-
4. **Confidence Filtering**: Only considers high-confidence predictions
|
376 |
-
5. **Results**: Provides detailed analysis and visualization
|
377 |
-
""")
|
378 |
|
379 |
-
|
380 |
-
|
|
|
|
|
|
|
381 |
|
382 |
-
#
|
383 |
-
|
384 |
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
)
|
391 |
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
"
|
397 |
-
"https://www.youtube.com/watch?v
|
398 |
-
|
|
|
399 |
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
|
418 |
# Analysis button
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
|
424 |
# Progress tracking
|
425 |
progress_bar = st.progress(0)
|
426 |
status_text = st.empty()
|
427 |
|
428 |
try:
|
429 |
-
|
430 |
-
|
431 |
-
progress_bar.progress(10)
|
432 |
-
time.sleep(1)
|
433 |
-
|
434 |
-
status_text.text("🎵 Extracting audio from video...")
|
435 |
-
progress_bar.progress(30)
|
436 |
-
time.sleep(1)
|
437 |
|
438 |
status_text.text("🧠 Loading AI model...")
|
439 |
-
progress_bar.progress(
|
440 |
-
time.sleep(1)
|
441 |
-
|
442 |
-
status_text.text("🔍 Analyzing accent patterns...")
|
443 |
-
progress_bar.progress(80)
|
444 |
|
445 |
-
|
446 |
-
|
447 |
|
448 |
-
#
|
449 |
-
|
450 |
|
451 |
progress_bar.progress(100)
|
452 |
status_text.text("✅ Analysis complete!")
|
453 |
-
time.sleep(0.5)
|
454 |
|
455 |
-
#
|
|
|
|
|
|
|
|
|
456 |
progress_bar.empty()
|
457 |
status_text.empty()
|
458 |
|
459 |
-
# Display results
|
460 |
-
if result["success"]:
|
461 |
-
st.success("🎉 Analysis completed successfully!")
|
462 |
-
|
463 |
-
# Main result highlight
|
464 |
-
st.markdown(f"""
|
465 |
-
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
466 |
-
color: white; padding: 2rem; border-radius: 15px; text-align: center; margin: 2rem 0;">
|
467 |
-
<h2>🎤 Detected Accent: {result['predicted_accent']}</h2>
|
468 |
-
<h3>📊 Confidence: {result['confidence_percentage']}</h3>
|
469 |
-
</div>
|
470 |
-
""", unsafe_allow_html=True)
|
471 |
-
|
472 |
-
# Detailed analysis
|
473 |
-
create_detailed_analysis(result)
|
474 |
-
|
475 |
-
# Chunk details
|
476 |
-
if result.get('chunk_results'):
|
477 |
-
display_chunk_details(result['chunk_results'], confidence_threshold)
|
478 |
-
|
479 |
-
# Raw data download
|
480 |
-
with st.expander("📥 Download Results", expanded=False):
|
481 |
-
# Convert results to DataFrame for download
|
482 |
-
if result.get('chunk_results'):
|
483 |
-
df = pd.DataFrame(result['chunk_results'])
|
484 |
-
csv = df.to_csv(index=False)
|
485 |
-
st.download_button(
|
486 |
-
label="📊 Download Chunk Results (CSV)",
|
487 |
-
data=csv,
|
488 |
-
file_name=f"accent_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
489 |
-
mime="text/csv"
|
490 |
-
)
|
491 |
-
|
492 |
-
# JSON download
|
493 |
-
import json
|
494 |
-
json_str = json.dumps(result, indent=2, default=str)
|
495 |
-
st.download_button(
|
496 |
-
label="📋 Download Full Results (JSON)",
|
497 |
-
data=json_str,
|
498 |
-
file_name=f"accent_analysis_full_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
499 |
-
mime="application/json"
|
500 |
-
)
|
501 |
-
else:
|
502 |
-
st.error(f"❌ Analysis failed: {result.get('error', 'Unknown error')}")
|
503 |
-
|
504 |
except Exception as e:
|
|
|
505 |
progress_bar.empty()
|
506 |
status_text.empty()
|
507 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
508 |
|
509 |
# Footer
|
510 |
st.markdown("---")
|
511 |
-
st.markdown(""
|
512 |
-
<div style="text-align: center; color: #666; margin-top: 2rem;">
|
513 |
-
<p>🎤 AI Accent Analyzer | Built with Streamlit & SpeechBrain</p>
|
514 |
-
<p>Analyze accents from YouTube videos with confidence-based filtering</p>
|
515 |
-
</div>
|
516 |
-
""", unsafe_allow_html=True)
|
517 |
|
518 |
if __name__ == "__main__":
|
519 |
main()
|
|
|
4 |
import plotly.graph_objects as go
|
5 |
from plotly.subplots import make_subplots
|
6 |
import time
|
7 |
+
import os
|
8 |
+
from pathlib import Path
|
9 |
+
import tempfile
|
10 |
+
import shutil
|
11 |
|
12 |
+
# Import your existing modules
|
13 |
+
try:
|
14 |
+
from audio_extractor import prepare_audio
|
15 |
+
from dialect_predector import analyze_video_accent
|
16 |
+
except ImportError as e:
|
17 |
+
st.error(f"Error importing modules: {e}")
|
18 |
+
st.stop()
|
19 |
|
20 |
# Page configuration
|
21 |
st.set_page_config(
|
22 |
+
page_title="🎤 Accent Analyzer",
|
23 |
page_icon="🎤",
|
24 |
layout="wide",
|
25 |
initial_sidebar_state="expanded"
|
26 |
)
|
27 |
|
28 |
+
# Custom CSS for better styling
|
29 |
st.markdown("""
|
30 |
<style>
|
31 |
.main-header {
|
|
|
|
|
|
|
|
|
32 |
text-align: center;
|
33 |
+
color: #1f77b4;
|
34 |
+
font-size: 3rem;
|
35 |
+
font-weight: bold;
|
36 |
margin-bottom: 2rem;
|
|
|
37 |
}
|
38 |
+
.metric-container {
|
39 |
+
background-color: #f0f2f6;
|
40 |
+
padding: 1rem;
|
41 |
+
border-radius: 0.5rem;
|
|
|
|
|
42 |
margin: 0.5rem 0;
|
|
|
43 |
}
|
44 |
+
.success-box {
|
45 |
+
background-color: #d4edda;
|
46 |
+
border: 1px solid #c3e6cb;
|
47 |
+
color: #155724;
|
48 |
+
padding: 1rem;
|
49 |
+
border-radius: 0.5rem;
|
50 |
margin: 1rem 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
}
|
52 |
+
.error-box {
|
53 |
+
background-color: #f8d7da;
|
54 |
+
border: 1px solid #f5c6cb;
|
55 |
+
color: #721c24;
|
56 |
+
padding: 1rem;
|
57 |
+
border-radius: 0.5rem;
|
58 |
+
margin: 1rem 0;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
}
|
60 |
+
.info-box {
|
61 |
+
background-color: #d1ecf1;
|
62 |
+
border: 1px solid #bee5eb;
|
63 |
+
color: #0c5460;
|
64 |
padding: 1rem;
|
65 |
+
border-radius: 0.5rem;
|
66 |
+
margin: 1rem 0;
|
67 |
}
|
68 |
</style>
|
69 |
""", unsafe_allow_html=True)
|
70 |
|
71 |
+
def initialize_session_state():
|
72 |
+
"""Initialize session state variables"""
|
73 |
+
if 'analysis_results' not in st.session_state:
|
74 |
+
st.session_state.analysis_results = None
|
75 |
+
if 'processing' not in st.session_state:
|
76 |
+
st.session_state.processing = False
|
77 |
+
if 'uploaded_file_path' not in st.session_state:
|
78 |
+
st.session_state.uploaded_file_path = None
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
def save_uploaded_file(uploaded_file):
|
81 |
+
"""Save uploaded file to temporary directory"""
|
82 |
+
try:
|
83 |
+
temp_dir = tempfile.mkdtemp()
|
84 |
+
file_path = os.path.join(temp_dir, uploaded_file.name)
|
85 |
+
with open(file_path, "wb") as f:
|
86 |
+
f.write(uploaded_file.getbuffer())
|
87 |
+
return file_path
|
88 |
+
except Exception as e:
|
89 |
+
st.error(f"Error saving uploaded file: {e}")
|
90 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
def create_confidence_chart(chunk_results):
|
93 |
+
"""Create confidence score chart for chunks"""
|
94 |
+
if not chunk_results:
|
95 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
chunk_data = []
|
98 |
+
for result in chunk_results:
|
99 |
+
chunk_data.append({
|
100 |
+
'Chunk': result['chunk'],
|
101 |
+
'Confidence': result['confidence'],
|
102 |
+
'Accent': result['accent'],
|
103 |
+
'Is Confident': '✓ Confident' if result['is_confident'] else '✗ Low Confidence'
|
104 |
+
})
|
105 |
+
|
106 |
+
df = pd.DataFrame(chunk_data)
|
107 |
+
|
108 |
+
fig = px.bar(df,
|
109 |
+
x='Chunk',
|
110 |
+
y='Confidence',
|
111 |
+
color='Is Confident',
|
112 |
+
hover_data=['Accent'],
|
113 |
+
title='Confidence Scores by Chunk',
|
114 |
+
color_discrete_map={'✓ Confident': '#28a745', '✗ Low Confidence': '#dc3545'})
|
115 |
|
116 |
fig.update_layout(
|
117 |
+
xaxis_title="Chunk Number",
|
118 |
+
yaxis_title="Confidence Score",
|
119 |
+
showlegend=True,
|
120 |
+
height=400
|
121 |
)
|
122 |
|
123 |
return fig
|
124 |
|
125 |
+
def create_accent_distribution_chart(accent_counts, title="Accent Distribution"):
|
126 |
+
"""Create pie chart for accent distribution"""
|
127 |
+
if not accent_counts:
|
128 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
accents = list(accent_counts.keys())
|
131 |
+
counts = list(accent_counts.values())
|
132 |
|
133 |
+
fig = px.pie(values=counts,
|
134 |
+
names=accents,
|
135 |
+
title=title,
|
136 |
+
color_discrete_sequence=px.colors.qualitative.Set3)
|
137 |
+
|
138 |
+
fig.update_traces(textposition='inside', textinfo='percent+label')
|
139 |
+
fig.update_layout(height=400)
|
140 |
|
141 |
return fig
|
142 |
|
143 |
+
def display_results(results):
|
144 |
+
"""Display analysis results with charts and metrics"""
|
145 |
+
if not results['success']:
|
146 |
+
st.markdown(f'<div class="error-box">❌ <strong>Error:</strong> {results["error"]}</div>',
|
147 |
+
unsafe_allow_html=True)
|
148 |
return
|
149 |
|
150 |
+
# Main result
|
151 |
+
st.markdown(f'<div class="success-box">🎤 <strong>Detected Accent:</strong> {results["predicted_accent"]}</div>',
|
152 |
+
unsafe_allow_html=True)
|
153 |
|
154 |
# Key metrics
|
155 |
col1, col2, col3, col4 = st.columns(4)
|
156 |
|
157 |
with col1:
|
|
|
158 |
st.metric(
|
159 |
+
label="🎯 Confidence Score",
|
160 |
+
value=f"{results['confidence_score']:.3f}",
|
161 |
+
delta=f"{results['confidence_percentage']}"
|
162 |
)
|
|
|
163 |
|
164 |
with col2:
|
|
|
165 |
st.metric(
|
166 |
+
label="📊 Chunks Processed",
|
167 |
+
value=f"{results['processed_chunks_count']}/{results['available_chunks_count']}",
|
168 |
+
delta="Early stopped" if results.get('early_stopped', False) else "Complete"
|
169 |
)
|
|
|
170 |
|
171 |
with col3:
|
|
|
172 |
st.metric(
|
173 |
+
label="✅ Confident Predictions",
|
174 |
+
value=results['confident_chunks_count'],
|
175 |
+
delta=f"{(results['confident_chunks_count']/results['processed_chunks_count']*100):.1f}%"
|
176 |
)
|
|
|
177 |
|
178 |
with col4:
|
|
|
|
|
179 |
st.metric(
|
180 |
+
label="⏱️ Processing Time",
|
181 |
+
value=f"{results['processing_time']:.1f}s",
|
182 |
+
delta=f"{results.get('duration_minutes', 0):.1f}min video"
|
183 |
)
|
|
|
184 |
|
185 |
+
# Detailed Analysis
|
186 |
+
st.subheader("📈 Detailed Analysis")
|
187 |
|
188 |
+
# Create two columns for charts
|
189 |
+
chart_col1, chart_col2 = st.columns(2)
|
190 |
|
191 |
+
# Confidence chart
|
192 |
+
with chart_col1:
|
193 |
+
confidence_chart = create_confidence_chart(results['chunk_results'])
|
194 |
+
if confidence_chart:
|
195 |
+
st.plotly_chart(confidence_chart, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
# Accent distribution for confident predictions
|
198 |
+
with chart_col2:
|
199 |
+
confident_chart = create_accent_distribution_chart(
|
200 |
+
results['confident_accent_counts'],
|
201 |
+
"Confident Predictions Distribution"
|
202 |
+
)
|
203 |
+
if confident_chart:
|
204 |
+
st.plotly_chart(confident_chart, use_container_width=True)
|
205 |
+
|
206 |
+
# All predictions distribution
|
207 |
+
if results['all_accent_counts'] != results['confident_accent_counts']:
|
208 |
+
st.subheader("📊 All Predictions (Including Low Confidence)")
|
209 |
+
all_chart = create_accent_distribution_chart(
|
210 |
+
results['all_accent_counts'],
|
211 |
+
"All Predictions Distribution"
|
212 |
+
)
|
213 |
+
if all_chart:
|
214 |
+
st.plotly_chart(all_chart, use_container_width=True)
|
|
|
|
|
215 |
|
216 |
+
# Detailed chunk results table
|
217 |
+
with st.expander("🔍 View Detailed Chunk Results"):
|
218 |
+
chunk_df = pd.DataFrame(results['chunk_results'])
|
219 |
+
st.dataframe(chunk_df, use_container_width=True)
|
220 |
|
221 |
# Summary statistics
|
222 |
+
with st.expander("📋 Summary Statistics"):
|
223 |
+
col1, col2 = st.columns(2)
|
224 |
+
|
225 |
+
with col1:
|
226 |
+
st.write("**Confident Predictions:**")
|
227 |
+
for accent, count in results['confident_accent_counts'].items():
|
228 |
+
percentage = (count / results['confident_chunks_count']) * 100
|
229 |
+
st.write(f"• {accent}: {count} chunks ({percentage:.1f}%)")
|
230 |
+
|
231 |
+
with col2:
|
232 |
+
st.write("**All Predictions:**")
|
233 |
+
for accent, count in results['all_accent_counts'].items():
|
234 |
+
percentage = (count / results['processed_chunks_count']) * 100
|
235 |
+
st.write(f"• {accent}: {count} chunks ({percentage:.1f}%)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
def main():
|
238 |
+
"""Main Streamlit application"""
|
239 |
+
initialize_session_state()
|
240 |
+
|
241 |
# Header
|
242 |
+
st.markdown('<h1 class="main-header">🎤 Accent Analyzer</h1>', unsafe_allow_html=True)
|
243 |
+
st.markdown("Analyze accents from video files, URLs, or audio sources using advanced AI models.")
|
244 |
+
|
245 |
+
# Sidebar configuration
|
246 |
+
st.sidebar.header("⚙️ Configuration")
|
247 |
+
|
248 |
+
confidence_threshold = st.sidebar.slider(
|
249 |
+
"Confidence Threshold",
|
250 |
+
min_value=0.1,
|
251 |
+
max_value=0.9,
|
252 |
+
value=0.6,
|
253 |
+
step=0.05,
|
254 |
+
help="Only predictions above this threshold are considered confident"
|
255 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
+
early_stopping = st.sidebar.checkbox(
|
258 |
+
"Enable Early Stopping",
|
259 |
+
value=True,
|
260 |
+
help="Stop processing when 3 consecutive confident predictions agree"
|
261 |
+
)
|
262 |
|
263 |
+
# Input section
|
264 |
+
st.header("📥 Input Source")
|
265 |
|
266 |
+
input_method = st.radio(
|
267 |
+
"Choose input method:",
|
268 |
+
["URL (YouTube, Loom, etc.)", "Upload File"],
|
269 |
+
horizontal=True
|
270 |
+
)
|
|
|
271 |
|
272 |
+
source = None
|
273 |
+
|
274 |
+
if input_method == "URL (YouTube, Loom, etc.)":
|
275 |
+
source = st.text_input(
|
276 |
+
"Enter video URL:",
|
277 |
+
placeholder="https://www.youtube.com/watch?v=...",
|
278 |
+
help="Supports YouTube, Loom, and direct media URLs"
|
279 |
+
)
|
280 |
|
281 |
+
# URL examples
|
282 |
+
with st.expander("🔗 Supported URL Examples"):
|
283 |
+
st.write("• YouTube: `https://www.youtube.com/watch?v=VIDEO_ID`")
|
284 |
+
st.write("• YouTube Shorts: `https://www.youtube.com/shorts/VIDEO_ID`")
|
285 |
+
st.write("• Loom: `https://www.loom.com/share/VIDEO_ID`")
|
286 |
+
st.write("• Direct media files: `https://example.com/video.mp4`")
|
287 |
+
|
288 |
+
else: # Upload File
|
289 |
+
uploaded_file = st.file_uploader(
|
290 |
+
"Choose a video or audio file",
|
291 |
+
type=['mp4', 'webm', 'avi', 'mov', 'mkv', 'm4v', '3gp', 'mp3', 'wav', 'm4a', 'aac', 'ogg', 'flac'],
|
292 |
+
help="Upload video or audio files for accent analysis"
|
293 |
+
)
|
294 |
+
|
295 |
+
if uploaded_file is not None:
|
296 |
+
# Save uploaded file
|
297 |
+
with st.spinner("Saving uploaded file..."):
|
298 |
+
source = save_uploaded_file(uploaded_file)
|
299 |
+
st.session_state.uploaded_file_path = source
|
300 |
+
|
301 |
+
if source:
|
302 |
+
st.success(f"✅ File uploaded: {uploaded_file.name}")
|
303 |
+
else:
|
304 |
+
st.error("❌ Failed to save uploaded file")
|
305 |
|
306 |
# Analysis button
|
307 |
+
analyze_button = st.button(
|
308 |
+
"🚀 Start Analysis",
|
309 |
+
type="primary",
|
310 |
+
disabled=not source or st.session_state.processing,
|
311 |
+
use_container_width=True
|
312 |
+
)
|
313 |
+
|
314 |
+
# Process analysis
|
315 |
+
if analyze_button and source:
|
316 |
+
st.session_state.processing = True
|
317 |
|
318 |
# Progress tracking
|
319 |
progress_bar = st.progress(0)
|
320 |
status_text = st.empty()
|
321 |
|
322 |
try:
|
323 |
+
status_text.text("🎵 Extracting audio...")
|
324 |
+
progress_bar.progress(20)
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
status_text.text("🧠 Loading AI model...")
|
327 |
+
progress_bar.progress(40)
|
|
|
|
|
|
|
|
|
328 |
|
329 |
+
status_text.text("🔍 Analyzing accent...")
|
330 |
+
progress_bar.progress(60)
|
331 |
|
332 |
+
# Run analysis
|
333 |
+
results = analyze_video_accent(source, confidence_threshold=confidence_threshold)
|
334 |
|
335 |
progress_bar.progress(100)
|
336 |
status_text.text("✅ Analysis complete!")
|
|
|
337 |
|
338 |
+
# Store results in session state
|
339 |
+
st.session_state.analysis_results = results
|
340 |
+
|
341 |
+
# Clean up progress indicators
|
342 |
+
time.sleep(1)
|
343 |
progress_bar.empty()
|
344 |
status_text.empty()
|
345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
except Exception as e:
|
347 |
+
st.error(f"❌ Analysis failed: {str(e)}")
|
348 |
progress_bar.empty()
|
349 |
status_text.empty()
|
350 |
+
|
351 |
+
finally:
|
352 |
+
st.session_state.processing = False
|
353 |
+
|
354 |
+
# Display results
|
355 |
+
if st.session_state.analysis_results:
|
356 |
+
st.header("📊 Results")
|
357 |
+
display_results(st.session_state.analysis_results)
|
358 |
+
|
359 |
+
# Information section
|
360 |
+
with st.expander("ℹ️ About This Tool"):
|
361 |
+
st.markdown("""
|
362 |
+
**Accent Analyzer** uses advanced machine learning models to identify accents from speech in videos and audio files.
|
363 |
+
|
364 |
+
**Features:**
|
365 |
+
- Supports multiple input sources (URLs, file uploads)
|
366 |
+
- Smart chunking for efficient processing
|
367 |
+
- Confidence-based predictions
|
368 |
+
- Early stopping for faster results
|
369 |
+
- Detailed analysis with visualizations
|
370 |
+
|
371 |
+
**Supported Formats:**
|
372 |
+
- **Video:** MP4, WebM, AVI, MOV, MKV, M4V, 3GP
|
373 |
+
- **Audio:** MP3, WAV, M4A, AAC, OGG, FLAC
|
374 |
+
- **URLs:** YouTube, Loom, direct media links
|
375 |
+
|
376 |
+
**How it works:**
|
377 |
+
1. Audio is extracted from the source
|
378 |
+
2. Audio is chunked into smaller segments
|
379 |
+
3. Each chunk is analyzed for accent features
|
380 |
+
4. Results are aggregated with confidence scoring
|
381 |
+
5. Final prediction is made based on confident predictions
|
382 |
+
""")
|
383 |
|
384 |
# Footer
|
385 |
st.markdown("---")
|
386 |
+
st.markdown("Made with ❤️ using Streamlit and SpeechBrain")
|
|
|
|
|
|
|
|
|
|
|
387 |
|
388 |
if __name__ == "__main__":
|
389 |
main()
|
audio_extractor.py
CHANGED
@@ -5,6 +5,9 @@ import warnings
|
|
5 |
import time
|
6 |
import shutil
|
7 |
import random
|
|
|
|
|
|
|
8 |
|
9 |
import torch
|
10 |
import torchaudio
|
@@ -27,35 +30,430 @@ def suppress_stdout_stderr():
|
|
27 |
sys.stdout = old_stdout
|
28 |
sys.stderr = old_stderr
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
'
|
37 |
-
'
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
end_time = time.time()
|
53 |
-
print(f"[⏱️] Audio
|
54 |
-
return
|
55 |
-
|
|
|
|
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
|
|
59 |
def smart_chunk_audio(waveform, sample_rate, duration_minutes):
|
60 |
"""Smart chunking based on video duration"""
|
61 |
total_duration = waveform.size(1) / sample_rate
|
@@ -136,11 +534,11 @@ def chunk_audio_strategic(waveform, sample_rate, chunk_length_sec=25):
|
|
136 |
print(f"📦 Strategic sampling: {len(chunks)} chunks from long video")
|
137 |
return chunks
|
138 |
|
139 |
-
def prepare_audio(
|
140 |
"""Main function to extract and prepare audio chunks"""
|
141 |
try:
|
142 |
-
print(f"🎵 Extracting audio from
|
143 |
-
audio_path = extract_audio_from_video_url(
|
144 |
print(f"✅ Audio extracted to: {audio_path}")
|
145 |
|
146 |
print(f"🎯 Loading and preparing audio...")
|
@@ -159,13 +557,6 @@ def prepare_audio(video_url):
|
|
159 |
end = time.time()
|
160 |
print(f"[⏱️] Audio preparation took {end - start:.2f} seconds.")
|
161 |
|
162 |
-
# # Apply simple VAD
|
163 |
-
# print(f"🎤 Applying Voice Activity Detection...")
|
164 |
-
# start = time.time()
|
165 |
-
# waveform = simple_vad(waveform, sample_rate)
|
166 |
-
# end = time.time()
|
167 |
-
# print(f"[⏱️] VAD took {end - start:.2f} seconds.")
|
168 |
-
|
169 |
# Calculate duration and apply smart chunking
|
170 |
duration_minutes = waveform.size(1) / sample_rate / 60
|
171 |
|
|
|
5 |
import time
|
6 |
import shutil
|
7 |
import random
|
8 |
+
import requests
|
9 |
+
from urllib.parse import urlparse, unquote
|
10 |
+
from pathlib import Path
|
11 |
|
12 |
import torch
|
13 |
import torchaudio
|
|
|
30 |
sys.stdout = old_stdout
|
31 |
sys.stderr = old_stderr
|
32 |
|
33 |
+
class RobustAudioExtractor:
|
34 |
+
def __init__(self):
|
35 |
+
self.supported_video_formats = ['.mp4', '.webm', '.avi', '.mov', '.mkv', '.m4v', '.3gp']
|
36 |
+
self.supported_audio_formats = ['.mp3', '.wav', '.m4a', '.aac', '.ogg', '.flac']
|
37 |
+
self.user_agents = [
|
38 |
+
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
|
39 |
+
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36',
|
40 |
+
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36'
|
41 |
+
]
|
42 |
+
|
43 |
+
def extract_audio_from_source(self, source):
|
44 |
+
"""
|
45 |
+
Extract audio from various sources:
|
46 |
+
- File path (uploaded file)
|
47 |
+
- Direct media URL (MP4, etc.)
|
48 |
+
- Loom URL
|
49 |
+
- Other video hosting URLs
|
50 |
+
"""
|
51 |
+
start_time = time.time()
|
52 |
+
|
53 |
+
# Check if source is a file path
|
54 |
+
if self._is_file_path(source):
|
55 |
+
print(f"📁 Processing uploaded file: {source}")
|
56 |
+
return self._process_local_file(source, start_time)
|
57 |
+
|
58 |
+
# Check if source is a direct media URL
|
59 |
+
if self._is_direct_media_url(source):
|
60 |
+
print(f"🔗 Processing direct media URL: {source}")
|
61 |
+
return self._download_direct_media(source, start_time)
|
62 |
+
|
63 |
+
# Check if source is a Loom URL
|
64 |
+
if self._is_loom_url(source):
|
65 |
+
print(f"🎥 Processing Loom URL: {source}")
|
66 |
+
return self._extract_from_loom(source, start_time)
|
67 |
+
|
68 |
+
# Try with yt-dlp for other platforms (with robust error handling)
|
69 |
+
print(f"🌐 Processing URL with yt-dlp: {source}")
|
70 |
+
return self._extract_with_ytdlp_robust(source, start_time)
|
71 |
+
|
72 |
+
def _is_file_path(self, source):
|
73 |
+
"""Check if source is a local file path"""
|
74 |
+
try:
|
75 |
+
path = Path(source)
|
76 |
+
return path.exists() and path.is_file()
|
77 |
+
except:
|
78 |
+
return False
|
79 |
+
|
80 |
+
def _is_direct_media_url(self, url):
|
81 |
+
"""Check if URL points directly to a media file"""
|
82 |
+
try:
|
83 |
+
parsed = urlparse(url.lower())
|
84 |
+
path = unquote(parsed.path)
|
85 |
+
return any(path.endswith(ext) for ext in self.supported_video_formats + self.supported_audio_formats)
|
86 |
+
except:
|
87 |
+
return False
|
88 |
+
|
89 |
+
def _is_loom_url(self, url):
|
90 |
+
"""Check if URL is a Loom video"""
|
91 |
+
return 'loom.com' in url.lower()
|
92 |
+
|
93 |
+
def _process_local_file(self, file_path, start_time):
|
94 |
+
"""Process a local file (uploaded file)"""
|
95 |
+
try:
|
96 |
+
file_ext = Path(file_path).suffix.lower()
|
97 |
+
|
98 |
+
# If it's already an audio file, just return it
|
99 |
+
if file_ext in self.supported_audio_formats:
|
100 |
+
if file_ext == '.wav':
|
101 |
+
end_time = time.time()
|
102 |
+
print(f"[⏱️] Audio file processing took {end_time - start_time:.2f} seconds.")
|
103 |
+
return file_path
|
104 |
+
else:
|
105 |
+
# Convert to WAV
|
106 |
+
return self._convert_to_wav(file_path, start_time)
|
107 |
+
|
108 |
+
# If it's a video file, extract audio
|
109 |
+
elif file_ext in self.supported_video_formats:
|
110 |
+
return self._extract_audio_from_video_file(file_path, start_time)
|
111 |
+
|
112 |
+
else:
|
113 |
+
raise Exception(f"Unsupported file format: {file_ext}")
|
114 |
+
|
115 |
+
except Exception as e:
|
116 |
+
raise Exception(f"Failed to process local file: {str(e)}")
|
117 |
+
|
118 |
+
def _download_direct_media(self, url, start_time):
|
119 |
+
"""Download direct media URL"""
|
120 |
+
temp_dir = tempfile.mkdtemp()
|
121 |
+
|
122 |
+
try:
|
123 |
+
headers = {
|
124 |
+
'User-Agent': random.choice(self.user_agents),
|
125 |
+
'Accept': '*/*',
|
126 |
+
'Accept-Language': 'en-US,en;q=0.9',
|
127 |
+
'Accept-Encoding': 'gzip, deflate, br',
|
128 |
+
'Connection': 'keep-alive',
|
129 |
+
'Upgrade-Insecure-Requests': '1',
|
130 |
+
}
|
131 |
+
|
132 |
+
response = requests.get(url, headers=headers, stream=True, timeout=30)
|
133 |
+
response.raise_for_status()
|
134 |
+
|
135 |
+
# Determine file extension
|
136 |
+
content_type = response.headers.get('content-type', '').lower()
|
137 |
+
if 'video' in content_type:
|
138 |
+
if 'mp4' in content_type:
|
139 |
+
ext = '.mp4'
|
140 |
+
elif 'webm' in content_type:
|
141 |
+
ext = '.webm'
|
142 |
+
else:
|
143 |
+
ext = '.mp4' # default
|
144 |
+
elif 'audio' in content_type:
|
145 |
+
if 'mpeg' in content_type or 'mp3' in content_type:
|
146 |
+
ext = '.mp3'
|
147 |
+
elif 'wav' in content_type:
|
148 |
+
ext = '.wav'
|
149 |
+
else:
|
150 |
+
ext = '.mp3' # default
|
151 |
+
else:
|
152 |
+
# Try to get from URL
|
153 |
+
parsed_url = urlparse(url)
|
154 |
+
url_ext = Path(parsed_url.path).suffix.lower()
|
155 |
+
ext = url_ext if url_ext in self.supported_video_formats + self.supported_audio_formats else '.mp4'
|
156 |
+
|
157 |
+
downloaded_file = os.path.join(temp_dir, f'downloaded{ext}')
|
158 |
+
|
159 |
+
with open(downloaded_file, 'wb') as f:
|
160 |
+
for chunk in response.iter_content(chunk_size=8192):
|
161 |
+
if chunk:
|
162 |
+
f.write(chunk)
|
163 |
+
|
164 |
+
print(f"✅ Downloaded {os.path.getsize(downloaded_file) / 1024 / 1024:.1f}MB")
|
165 |
+
|
166 |
+
# Process the downloaded file
|
167 |
+
if ext in self.supported_audio_formats:
|
168 |
+
if ext == '.wav':
|
169 |
+
end_time = time.time()
|
170 |
+
print(f"[⏱️] Direct audio download took {end_time - start_time:.2f} seconds.")
|
171 |
+
return downloaded_file
|
172 |
+
else:
|
173 |
+
return self._convert_to_wav(downloaded_file, start_time)
|
174 |
+
else:
|
175 |
+
return self._extract_audio_from_video_file(downloaded_file, start_time)
|
176 |
+
|
177 |
+
except Exception as e:
|
178 |
+
if os.path.exists(temp_dir):
|
179 |
+
shutil.rmtree(temp_dir, ignore_errors=True)
|
180 |
+
raise Exception(f"Failed to download direct media: {str(e)}")
|
181 |
+
|
182 |
+
def _extract_from_loom(self, url, start_time):
|
183 |
+
"""Extract audio from Loom with multiple strategies"""
|
184 |
+
strategies = [
|
185 |
+
self._loom_strategy_basic,
|
186 |
+
self._loom_strategy_embed,
|
187 |
+
self._loom_strategy_api,
|
188 |
+
]
|
189 |
+
|
190 |
+
for i, strategy in enumerate(strategies):
|
191 |
+
try:
|
192 |
+
print(f"Trying Loom strategy {i+1}...")
|
193 |
+
result = strategy(url, start_time)
|
194 |
+
if result:
|
195 |
+
return result
|
196 |
+
time.sleep(1) # Brief delay between strategies
|
197 |
+
except Exception as e:
|
198 |
+
print(f"Loom strategy {i+1} failed: {str(e)}")
|
199 |
+
continue
|
200 |
+
|
201 |
+
raise Exception("Failed to extract audio from Loom URL with all strategies")
|
202 |
+
|
203 |
+
def _loom_strategy_basic(self, url, start_time):
|
204 |
+
"""Basic Loom extraction using yt-dlp"""
|
205 |
+
temp_dir = tempfile.mkdtemp()
|
206 |
+
ydl_opts = {
|
207 |
+
'format': 'bestaudio[abr<=128]/best[height<=720]',
|
208 |
+
'postprocessors': [{
|
209 |
+
'key': 'FFmpegExtractAudio',
|
210 |
+
'preferredcodec': 'wav',
|
211 |
+
'preferredquality': '192',
|
212 |
+
}],
|
213 |
+
'outtmpl': os.path.join(temp_dir, 'loom_audio.%(ext)s'),
|
214 |
+
'quiet': True,
|
215 |
+
'no_warnings': True,
|
216 |
+
'noplaylist': True,
|
217 |
+
'http_headers': {
|
218 |
+
'User-Agent': random.choice(self.user_agents)
|
219 |
+
}
|
220 |
+
}
|
221 |
+
|
222 |
+
with suppress_stdout_stderr():
|
223 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
224 |
+
ydl.download([url])
|
225 |
+
|
226 |
+
return self._find_audio_file(temp_dir, start_time)
|
227 |
+
|
228 |
+
def _loom_strategy_embed(self, url, start_time):
|
229 |
+
"""Try Loom embed URL format"""
|
230 |
+
# Extract video ID from Loom URL
|
231 |
+
import re
|
232 |
+
loom_id_match = re.search(r'loom\.com/share/([a-zA-Z0-9]+)', url)
|
233 |
+
if loom_id_match:
|
234 |
+
video_id = loom_id_match.group(1)
|
235 |
+
embed_url = f"https://www.loom.com/embed/{video_id}"
|
236 |
+
return self._loom_strategy_basic(embed_url, start_time)
|
237 |
+
return None
|
238 |
+
|
239 |
+
def _loom_strategy_api(self, url, start_time):
|
240 |
+
"""Try to get direct video URL from Loom"""
|
241 |
+
# This is a placeholder for a more sophisticated approach
|
242 |
+
# You might need to inspect Loom's network requests to find direct video URLs
|
243 |
+
return None
|
244 |
+
|
245 |
+
def _extract_with_ytdlp_robust(self, url, start_time):
|
246 |
+
"""Robust yt-dlp extraction with multiple strategies"""
|
247 |
+
strategies = [
|
248 |
+
self._ytdlp_strategy_basic,
|
249 |
+
self._ytdlp_strategy_with_headers,
|
250 |
+
self._ytdlp_strategy_low_quality,
|
251 |
+
self._ytdlp_strategy_audio_only,
|
252 |
+
]
|
253 |
+
|
254 |
+
for i, strategy in enumerate(strategies):
|
255 |
+
try:
|
256 |
+
print(f"Trying yt-dlp strategy {i+1}...")
|
257 |
+
result = strategy(url, start_time)
|
258 |
+
if result:
|
259 |
+
return result
|
260 |
+
time.sleep(random.uniform(1, 3))
|
261 |
+
except Exception as e:
|
262 |
+
print(f"yt-dlp strategy {i+1} failed: {str(e)}")
|
263 |
+
continue
|
264 |
+
|
265 |
+
raise Exception("Failed to extract audio with all yt-dlp strategies")
|
266 |
+
|
267 |
+
def _ytdlp_strategy_basic(self, url, start_time):
|
268 |
+
"""Basic yt-dlp strategy"""
|
269 |
+
temp_dir = tempfile.mkdtemp()
|
270 |
+
ydl_opts = {
|
271 |
+
'format': 'bestaudio[abr<=64]/worst',
|
272 |
+
'postprocessors': [{
|
273 |
+
'key': 'FFmpegExtractAudio',
|
274 |
+
'preferredcodec': 'wav',
|
275 |
+
'preferredquality': '192',
|
276 |
+
}],
|
277 |
+
'outtmpl': os.path.join(temp_dir, 'audio.%(ext)s'),
|
278 |
+
'quiet': True,
|
279 |
+
'no_warnings': True,
|
280 |
+
'noplaylist': True,
|
281 |
+
}
|
282 |
+
|
283 |
+
with suppress_stdout_stderr():
|
284 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
285 |
+
ydl.download([url])
|
286 |
+
|
287 |
+
return self._find_audio_file(temp_dir, start_time)
|
288 |
+
|
289 |
+
def _ytdlp_strategy_with_headers(self, url, start_time):
|
290 |
+
"""yt-dlp with browser-like headers"""
|
291 |
+
temp_dir = tempfile.mkdtemp()
|
292 |
+
ydl_opts = {
|
293 |
+
'format': 'bestaudio[abr<=64]/worst',
|
294 |
+
'postprocessors': [{
|
295 |
+
'key': 'FFmpegExtractAudio',
|
296 |
+
'preferredcodec': 'wav',
|
297 |
+
'preferredquality': '192',
|
298 |
+
}],
|
299 |
+
'outtmpl': os.path.join(temp_dir, 'audio.%(ext)s'),
|
300 |
+
'quiet': True,
|
301 |
+
'no_warnings': True,
|
302 |
+
'noplaylist': True,
|
303 |
+
'http_headers': {
|
304 |
+
'User-Agent': random.choice(self.user_agents),
|
305 |
+
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
|
306 |
+
'Accept-Language': 'en-US,en;q=0.9',
|
307 |
+
'Accept-Encoding': 'gzip, deflate',
|
308 |
+
'Connection': 'keep-alive',
|
309 |
+
},
|
310 |
+
'sleep_interval': 1,
|
311 |
+
'max_sleep_interval': 3,
|
312 |
+
}
|
313 |
+
|
314 |
+
with suppress_stdout_stderr():
|
315 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
316 |
+
ydl.download([url])
|
317 |
+
|
318 |
+
return self._find_audio_file(temp_dir, start_time)
|
319 |
+
|
320 |
+
def _ytdlp_strategy_low_quality(self, url, start_time):
|
321 |
+
"""yt-dlp with lowest quality to avoid detection"""
|
322 |
+
temp_dir = tempfile.mkdtemp()
|
323 |
+
ydl_opts = {
|
324 |
+
'format': 'worstaudio/worst',
|
325 |
+
'postprocessors': [{
|
326 |
+
'key': 'FFmpegExtractAudio',
|
327 |
+
'preferredcodec': 'wav',
|
328 |
+
'preferredquality': '128',
|
329 |
+
}],
|
330 |
+
'outtmpl': os.path.join(temp_dir, 'audio.%(ext)s'),
|
331 |
+
'quiet': True,
|
332 |
+
'no_warnings': True,
|
333 |
+
'noplaylist': True,
|
334 |
+
'sleep_interval': 2,
|
335 |
+
'max_sleep_interval': 5,
|
336 |
+
}
|
337 |
+
|
338 |
+
with suppress_stdout_stderr():
|
339 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
340 |
+
ydl.download([url])
|
341 |
+
|
342 |
+
return self._find_audio_file(temp_dir, start_time)
|
343 |
+
|
344 |
+
def _ytdlp_strategy_audio_only(self, url, start_time):
|
345 |
+
"""yt-dlp targeting audio-only streams"""
|
346 |
+
temp_dir = tempfile.mkdtemp()
|
347 |
+
ydl_opts = {
|
348 |
+
'format': 'bestaudio',
|
349 |
+
'outtmpl': os.path.join(temp_dir, 'audio.%(ext)s'),
|
350 |
+
'postprocessors': [{
|
351 |
+
'key': 'FFmpegExtractAudio',
|
352 |
+
'preferredcodec': 'wav',
|
353 |
+
'preferredquality': '192',
|
354 |
+
}],
|
355 |
+
'prefer_ffmpeg': True,
|
356 |
+
'ignoreerrors': True,
|
357 |
+
'quiet': True,
|
358 |
+
'no_warnings': True,
|
359 |
+
}
|
360 |
+
|
361 |
+
with suppress_stdout_stderr():
|
362 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
363 |
+
ydl.download([url])
|
364 |
+
|
365 |
+
return self._find_audio_file(temp_dir, start_time)
|
366 |
+
|
367 |
+
def _extract_audio_from_video_file(self, video_file, start_time):
|
368 |
+
"""Extract audio from video file using FFmpeg"""
|
369 |
+
temp_dir = tempfile.mkdtemp()
|
370 |
+
output_audio = os.path.join(temp_dir, 'extracted_audio.wav')
|
371 |
+
|
372 |
+
try:
|
373 |
+
import subprocess
|
374 |
+
|
375 |
+
# Use FFmpeg to extract audio
|
376 |
+
cmd = [
|
377 |
+
'ffmpeg', '-i', video_file,
|
378 |
+
'-vn', # no video
|
379 |
+
'-acodec', 'pcm_s16le', # uncompressed WAV
|
380 |
+
'-ar', '16000', # 16kHz sample rate
|
381 |
+
'-ac', '1', # mono
|
382 |
+
'-y', # overwrite output file
|
383 |
+
output_audio
|
384 |
+
]
|
385 |
+
|
386 |
+
result = subprocess.run(cmd, capture_output=True, text=True, timeout=300)
|
387 |
+
|
388 |
+
if result.returncode == 0 and os.path.exists(output_audio):
|
389 |
+
end_time = time.time()
|
390 |
+
print(f"[⏱️] Audio extraction from video took {end_time - start_time:.2f} seconds.")
|
391 |
+
return output_audio
|
392 |
+
else:
|
393 |
+
raise Exception(f"FFmpeg failed: {result.stderr}")
|
394 |
+
|
395 |
+
except FileNotFoundError:
|
396 |
+
# Fallback to torchaudio if FFmpeg not available
|
397 |
+
return self._convert_to_wav(video_file, start_time)
|
398 |
+
except Exception as e:
|
399 |
+
raise Exception(f"Failed to extract audio from video: {str(e)}")
|
400 |
+
|
401 |
+
def _convert_to_wav(self, audio_file, start_time):
|
402 |
+
"""Convert audio file to WAV format"""
|
403 |
+
try:
|
404 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
405 |
+
|
406 |
+
# Convert to mono if needed
|
407 |
+
if waveform.shape[0] > 1:
|
408 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
409 |
+
|
410 |
+
# Resample to 16kHz if needed
|
411 |
+
if sample_rate != 16000:
|
412 |
+
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
|
413 |
+
|
414 |
+
# Save as WAV
|
415 |
+
temp_dir = tempfile.mkdtemp()
|
416 |
+
output_wav = os.path.join(temp_dir, 'converted_audio.wav')
|
417 |
+
torchaudio.save(output_wav, waveform, 16000)
|
418 |
+
|
419 |
end_time = time.time()
|
420 |
+
print(f"[⏱️] Audio conversion took {end_time - start_time:.2f} seconds.")
|
421 |
+
return output_wav
|
422 |
+
|
423 |
+
except Exception as e:
|
424 |
+
raise Exception(f"Failed to convert audio to WAV: {str(e)}")
|
425 |
|
426 |
+
def _find_audio_file(self, directory, start_time):
|
427 |
+
"""Find the extracted audio file"""
|
428 |
+
audio_extensions = ['.wav', '.mp3', '.m4a', '.ogg', '.aac']
|
429 |
+
|
430 |
+
for file in os.listdir(directory):
|
431 |
+
if any(file.lower().endswith(ext) for ext in audio_extensions):
|
432 |
+
audio_path = os.path.join(directory, file)
|
433 |
+
|
434 |
+
# Convert to WAV if not already
|
435 |
+
if not file.lower().endswith('.wav'):
|
436 |
+
return self._convert_to_wav(audio_path, start_time)
|
437 |
+
|
438 |
+
end_time = time.time()
|
439 |
+
print(f"[⏱️] Audio extraction took {end_time - start_time:.2f} seconds.")
|
440 |
+
return audio_path
|
441 |
+
|
442 |
+
raise Exception("No audio file found after extraction")
|
443 |
|
444 |
+
# Update the main function to use the new extractor
|
445 |
+
def extract_audio_from_video_url(video_source):
|
446 |
+
"""
|
447 |
+
Main function that handles all types of video sources:
|
448 |
+
- File paths (uploaded files)
|
449 |
+
- Direct media URLs
|
450 |
+
- Loom URLs
|
451 |
+
- Other video platform URLs
|
452 |
+
"""
|
453 |
+
extractor = RobustAudioExtractor()
|
454 |
+
return extractor.extract_audio_from_source(video_source)
|
455 |
|
456 |
+
# Keep the existing chunking functions unchanged
|
457 |
def smart_chunk_audio(waveform, sample_rate, duration_minutes):
|
458 |
"""Smart chunking based on video duration"""
|
459 |
total_duration = waveform.size(1) / sample_rate
|
|
|
534 |
print(f"📦 Strategic sampling: {len(chunks)} chunks from long video")
|
535 |
return chunks
|
536 |
|
537 |
+
def prepare_audio(video_source):
|
538 |
"""Main function to extract and prepare audio chunks"""
|
539 |
try:
|
540 |
+
print(f"🎵 Extracting audio from source...")
|
541 |
+
audio_path = extract_audio_from_video_url(video_source)
|
542 |
print(f"✅ Audio extracted to: {audio_path}")
|
543 |
|
544 |
print(f"🎯 Loading and preparing audio...")
|
|
|
557 |
end = time.time()
|
558 |
print(f"[⏱️] Audio preparation took {end - start:.2f} seconds.")
|
559 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
560 |
# Calculate duration and apply smart chunking
|
561 |
duration_minutes = waveform.size(1) / sample_rate / 60
|
562 |
|
requirements.txt
CHANGED
@@ -8,6 +8,5 @@ IPython==7.34.0
|
|
8 |
ffmpeg-python==0.2.0
|
9 |
validators==0.35.0
|
10 |
streamlit==1.45.1
|
11 |
-
|
12 |
-
|
13 |
-
numpy==2.2.6
|
|
|
8 |
ffmpeg-python==0.2.0
|
9 |
validators==0.35.0
|
10 |
streamlit==1.45.1
|
11 |
+
|
12 |
+
|
|