Spaces:
Sleeping
Sleeping
- README.md +0 -33
- src/streamlit_app.py +0 -40
README.md
CHANGED
@@ -1,33 +0,0 @@
|
|
1 |
-
---
|
2 |
-
<<<<<<< HEAD
|
3 |
-
title: AI Accent Analyzer
|
4 |
-
emoji: π€
|
5 |
-
colorFrom: blue
|
6 |
-
colorTo: purple
|
7 |
-
sdk: streamlit
|
8 |
-
sdk_version: 1.28.1
|
9 |
-
app_file: app.py
|
10 |
-
pinned: false
|
11 |
-
license: mit
|
12 |
-
---
|
13 |
-
|
14 |
-
# π€ AI Accent Analyzer
|
15 |
-
|
16 |
-
Analyze accents from YouTube videos using advanced AI models with confidence-based filtering.
|
17 |
-
|
18 |
-
## Features
|
19 |
-
- π₯ YouTube video support (including Shorts)
|
20 |
-
- π§ SpeechBrain AI model for accent detection
|
21 |
-
- π Confidence-based filtering (configurable threshold)
|
22 |
-
- β‘ Early stopping mechanism
|
23 |
-
- π Interactive visualizations
|
24 |
-
- π₯ Export results (CSV/JSON)
|
25 |
-
|
26 |
-
## How to Use
|
27 |
-
1. Paste a YouTube video URL
|
28 |
-
2. Adjust confidence threshold if needed
|
29 |
-
3. Click "Analyze Accent"
|
30 |
-
4. View detailed results and visualizations
|
31 |
-
|
32 |
-
Built with Streamlit, SpeechBrain, and Plotly.
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/streamlit_app.py
DELETED
@@ -1,40 +0,0 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
import streamlit as st
|
5 |
-
|
6 |
-
"""
|
7 |
-
# Welcome to Streamlit!
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|