Amr-h commited on
Commit
a61a2eb
Β·
1 Parent(s): fe1f2aa
Files changed (2) hide show
  1. README.md +0 -33
  2. src/streamlit_app.py +0 -40
README.md CHANGED
@@ -1,33 +0,0 @@
1
- ---
2
- <<<<<<< HEAD
3
- title: AI Accent Analyzer
4
- emoji: 🎀
5
- colorFrom: blue
6
- colorTo: purple
7
- sdk: streamlit
8
- sdk_version: 1.28.1
9
- app_file: app.py
10
- pinned: false
11
- license: mit
12
- ---
13
-
14
- # 🎀 AI Accent Analyzer
15
-
16
- Analyze accents from YouTube videos using advanced AI models with confidence-based filtering.
17
-
18
- ## Features
19
- - πŸŽ₯ YouTube video support (including Shorts)
20
- - 🧠 SpeechBrain AI model for accent detection
21
- - πŸ“Š Confidence-based filtering (configurable threshold)
22
- - ⚑ Early stopping mechanism
23
- - πŸ“ˆ Interactive visualizations
24
- - πŸ“₯ Export results (CSV/JSON)
25
-
26
- ## How to Use
27
- 1. Paste a YouTube video URL
28
- 2. Adjust confidence threshold if needed
29
- 3. Click "Analyze Accent"
30
- 4. View detailed results and visualizations
31
-
32
- Built with Streamlit, SpeechBrain, and Plotly.
33
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
src/streamlit_app.py DELETED
@@ -1,40 +0,0 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
- import streamlit as st
5
-
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))