File size: 7,751 Bytes
1a9ac32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import pickle
from pathlib import Path
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from streamlit_plotly_events import plotly_events
import streamlit as st
import pandas as pd
import numpy as np
from sklearn import preprocessing
import pywt


def convert_pumping_data_to_df(uploaded_file):
    
    df = pd.read_excel(uploaded_file)
    # convert the date column to datatime
    try:
        #convert the first column to datetime
        df.iloc[:,0] = pd.to_datetime(df.iloc[:,0])
       
    except Exception as e:
        st.warning(f"An error occurred while converting the date column to datetime: {e}")
        
    return df

def convert_ms_to_df(uploaded_file):
    
    df = pd.read_excel(uploaded_file)
    # convert the date column to datatime
    try:
        #convert the first column to datetime
        df.iloc[:,0] = pd.to_datetime(df.iloc[:,0])
       
    except Exception as e:
        st.warning(f"An error occurred while converting the date column to datetime: {e}")
        
    return df    

def plot_pumping_data(df, date_col, pressure_col, rate_col):
    fig = make_subplots(specs=[[{"secondary_y": True}]])
    fig.add_trace(go.Scatter(x=df[date_col], y=df[pressure_col], mode='lines', name='Pressure', line=dict(color='blue')), secondary_y=False)
    fig.add_trace(go.Scatter(x=df[date_col], y=df[rate_col], mode='lines', name='Rate', line=dict(color='red')), secondary_y=True)
    fig.update_layout(title_text="Pumping Data")
    fig.update_xaxes(title_text="Date")
    fig.update_yaxes(title_text="Pressure", secondary_y=False)
    fig.update_yaxes(title_text="Rate", secondary_y=True)
    #update the legend to be horizonal at the top
    fig.update_layout(legend=dict(
        orientation="h",
        yanchor="bottom",
        y=1.02,
        xanchor="right",
        x=1
    ))
    
    #remove secondary axis gridlines
    fig.update_yaxes(showgrid=False, secondary_y=True)
    #click event on the chart to get the x axis value
    # Attempt to capture click events using streamlit-plotly-events (install required)
    
    
    return fig
    

def calculate_cwt(df,time_col,pressure_col):


    #convert first column in both data frame pumping and microseismic to datetime
    df[time_col] = pd.to_datetime(df[time_col])

    norm_coef2_a,period,time_data,scales_a,coef_a, freqs_a,pressure_data = continous_wavelet_transformer(df[pressure_col],df[time_col])
    #transpose norm_coef2_a
    norm_coef2_a = norm_coef2_a.T   
    #merge the norm_coef2_a with time_data as date time and pressure data and QC_LOC_X,Y,Z and remove the nulls in time_data
    norm_coef2_a = pd.DataFrame(norm_coef2_a,columns=scales_a)
        
    norm_coef2_a['t'] = df[time_col]
    norm_coef2_a['p'] = df[pressure_col]
    norm_coef2_a = norm_coef2_a.dropna(subset=['t'])

    return norm_coef2_a


def continous_wavelet_transformer(pressure_data,time_data):
    scales_a = np.linspace(1, 256, 256)
    coef_a, freqs_a = pywt.cwt(pressure_data, scales_a, "cmor1.5-1.0")

    energy = np.sqrt(coef_a.real**2 + coef_a.imag**2)
    coef2_a = np.log2(energy)
    period = 1.0 / freqs_a
    scaler=preprocessing.MinMaxScaler(feature_range=(0,1)).fit(coef2_a)
    norm_coef2_a=scaler.transform(coef2_a)
    
    return norm_coef2_a,period,time_data,scales_a,coef_a, freqs_a,pressure_data

def reload_DT_model():
    # Load the model from the file
    with open(Path('DecisionTree.pkl'), 'rb') as file:
        model = pickle.load(file)
    return model

def import_min_max():
    #import min max from txt file
    with open(Path('max_min.txt'),'r') as f:
        
        min_max = f.readlines()
        min_max = [x.strip() for x in min_max]
        min_max = [x.split(',') for x in min_max]
        min_max = [[float(y) for y in x] for x in min_max]
        min_max = np.array(min_max)
    return min_max

def predict_microseismic_events(df,x_names,y_names,east_perf,north_perf,depth_perf):
    
    model = reload_DT_model()
    #predict the microseismic events
    
    df.reset_index(drop=True, inplace=True)
    df.rename(columns=dict(zip(df.columns[:256], x_names)), inplace=True)
    
    ds_test = df[x_names]
    

    # Convert example_data to a DataFrame with column names (cont_names)

    example_data_df = pd.DataFrame(ds_test, columns=x_names)

    # Make predictions on the example data

    predictions = model.predict(example_data_df)
    
    # convert the predictions to dataframe

    predictions_df = pd.DataFrame(predictions, columns=y_names)
   
    # trail the column names with _pred

    predictions_df.columns = [
        str(col) + '_pred' for col in predictions_df.columns]

    final_df = predictions_df.reset_index(drop=True)
    
    # denormalize the pred columns using min max

    min_max = import_min_max()
    
    final_df['delta_east_pred_denormalized'] = final_df['delta_east_pred'] * \
        (min_max[0][1] - min_max[0][0]) + min_max[0][0]

    final_df['delta_north_pred_denormalized'] = (
        final_df['delta_north_pred'] * (min_max[1][1] - min_max[1][0]) + min_max[1][0])

    final_df['delta_depth_pred_denormalized'] = final_df['delta_depth_pred'] * \
        (min_max[2][1] - min_max[2][0]) + min_max[2][0]

    final_df['east_pred'] = final_df['delta_east_pred_denormalized'] +  east_perf

    final_df['north_pred'] = final_df['delta_north_pred_denormalized'] + north_perf

    final_df['depth_pred'] = final_df['delta_depth_pred_denormalized'] + depth_perf
    
    final = pd.concat([df, final_df], axis=1)

    return final

def plot_microseismic_events(final):
  
    fig = go.Figure(data=[go.Scatter3d(
        x=final['east_pred'],
        y=final['north_pred'],
        z=final['depth_pred'],
        mode='markers',
        marker=dict(
            size=3,
            opacity=1,
            color='red'
        ),
        name='Predicted'
    )])
    # #add the predicted
    # fig.add_trace(go.Scatter3d(
    #     x=final['east_pred'],
    #     y=final['north_pred'],
    #     z=final['depth_pred'],
    #     mode='markers',
    #     marker=dict(
    #         size=2,
    #         opacity=0.2,
    #         color='red'
    #     ),
    #     name='predicted'
    # ))
    fig.update_layout(title=f"Predicted Micro Seismic Events", xaxis_title="east", yaxis_title="north",height=800)
    return fig

def compare_microseismic_events(final,actual,east,north,depth,depth_shift):
    # #convert first column in final to datetime64[ns]
    # final['t'] = pd.to_datetime(final['t'])
    
    # st.write(actual[time_col])
    # st.write(final.t)
    
    

    # #write the type of final.t column and actual[time_col] column
    # st.write(f"actual[time_col] column type: {actual[time_col].dtype}")
    # st.write(f"final.t column type: {final.t.dtype}")
    
    # #join the final and actual depending on column zero
    
    # # joined_df = pd.merge(final, actual, left_on='t', right_on=time_col, how='outer')

    # st.write(joined_df)
    
    actual[depth] = depth_shift - actual[depth]
    
    
    fig = go.Figure(data=[go.Scatter3d(
        x=final['east_pred'],
        y=final['north_pred'],
        z=final['depth_pred'],
        mode='markers',
        marker=dict(
            size=2,
            opacity=0.3,
            color='red'
        ),
        name='Predicted'
    )])
    #add the actual
    fig.add_trace(go.Scatter3d(
        x=actual[east],
        y=actual[north],
        z=actual[depth],
        mode='markers',
        marker=dict(
            size=3,
            opacity=1,
            color='navy'
        ),
        name='Actual'
    ))
    fig.update_layout(title=f"Predicted Micro Seismic Events", xaxis_title="east", yaxis_title="north",height=800)
    return fig