File size: 7,751 Bytes
1a9ac32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import pickle
from pathlib import Path
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from streamlit_plotly_events import plotly_events
import streamlit as st
import pandas as pd
import numpy as np
from sklearn import preprocessing
import pywt
def convert_pumping_data_to_df(uploaded_file):
df = pd.read_excel(uploaded_file)
# convert the date column to datatime
try:
#convert the first column to datetime
df.iloc[:,0] = pd.to_datetime(df.iloc[:,0])
except Exception as e:
st.warning(f"An error occurred while converting the date column to datetime: {e}")
return df
def convert_ms_to_df(uploaded_file):
df = pd.read_excel(uploaded_file)
# convert the date column to datatime
try:
#convert the first column to datetime
df.iloc[:,0] = pd.to_datetime(df.iloc[:,0])
except Exception as e:
st.warning(f"An error occurred while converting the date column to datetime: {e}")
return df
def plot_pumping_data(df, date_col, pressure_col, rate_col):
fig = make_subplots(specs=[[{"secondary_y": True}]])
fig.add_trace(go.Scatter(x=df[date_col], y=df[pressure_col], mode='lines', name='Pressure', line=dict(color='blue')), secondary_y=False)
fig.add_trace(go.Scatter(x=df[date_col], y=df[rate_col], mode='lines', name='Rate', line=dict(color='red')), secondary_y=True)
fig.update_layout(title_text="Pumping Data")
fig.update_xaxes(title_text="Date")
fig.update_yaxes(title_text="Pressure", secondary_y=False)
fig.update_yaxes(title_text="Rate", secondary_y=True)
#update the legend to be horizonal at the top
fig.update_layout(legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1
))
#remove secondary axis gridlines
fig.update_yaxes(showgrid=False, secondary_y=True)
#click event on the chart to get the x axis value
# Attempt to capture click events using streamlit-plotly-events (install required)
return fig
def calculate_cwt(df,time_col,pressure_col):
#convert first column in both data frame pumping and microseismic to datetime
df[time_col] = pd.to_datetime(df[time_col])
norm_coef2_a,period,time_data,scales_a,coef_a, freqs_a,pressure_data = continous_wavelet_transformer(df[pressure_col],df[time_col])
#transpose norm_coef2_a
norm_coef2_a = norm_coef2_a.T
#merge the norm_coef2_a with time_data as date time and pressure data and QC_LOC_X,Y,Z and remove the nulls in time_data
norm_coef2_a = pd.DataFrame(norm_coef2_a,columns=scales_a)
norm_coef2_a['t'] = df[time_col]
norm_coef2_a['p'] = df[pressure_col]
norm_coef2_a = norm_coef2_a.dropna(subset=['t'])
return norm_coef2_a
def continous_wavelet_transformer(pressure_data,time_data):
scales_a = np.linspace(1, 256, 256)
coef_a, freqs_a = pywt.cwt(pressure_data, scales_a, "cmor1.5-1.0")
energy = np.sqrt(coef_a.real**2 + coef_a.imag**2)
coef2_a = np.log2(energy)
period = 1.0 / freqs_a
scaler=preprocessing.MinMaxScaler(feature_range=(0,1)).fit(coef2_a)
norm_coef2_a=scaler.transform(coef2_a)
return norm_coef2_a,period,time_data,scales_a,coef_a, freqs_a,pressure_data
def reload_DT_model():
# Load the model from the file
with open(Path('DecisionTree.pkl'), 'rb') as file:
model = pickle.load(file)
return model
def import_min_max():
#import min max from txt file
with open(Path('max_min.txt'),'r') as f:
min_max = f.readlines()
min_max = [x.strip() for x in min_max]
min_max = [x.split(',') for x in min_max]
min_max = [[float(y) for y in x] for x in min_max]
min_max = np.array(min_max)
return min_max
def predict_microseismic_events(df,x_names,y_names,east_perf,north_perf,depth_perf):
model = reload_DT_model()
#predict the microseismic events
df.reset_index(drop=True, inplace=True)
df.rename(columns=dict(zip(df.columns[:256], x_names)), inplace=True)
ds_test = df[x_names]
# Convert example_data to a DataFrame with column names (cont_names)
example_data_df = pd.DataFrame(ds_test, columns=x_names)
# Make predictions on the example data
predictions = model.predict(example_data_df)
# convert the predictions to dataframe
predictions_df = pd.DataFrame(predictions, columns=y_names)
# trail the column names with _pred
predictions_df.columns = [
str(col) + '_pred' for col in predictions_df.columns]
final_df = predictions_df.reset_index(drop=True)
# denormalize the pred columns using min max
min_max = import_min_max()
final_df['delta_east_pred_denormalized'] = final_df['delta_east_pred'] * \
(min_max[0][1] - min_max[0][0]) + min_max[0][0]
final_df['delta_north_pred_denormalized'] = (
final_df['delta_north_pred'] * (min_max[1][1] - min_max[1][0]) + min_max[1][0])
final_df['delta_depth_pred_denormalized'] = final_df['delta_depth_pred'] * \
(min_max[2][1] - min_max[2][0]) + min_max[2][0]
final_df['east_pred'] = final_df['delta_east_pred_denormalized'] + east_perf
final_df['north_pred'] = final_df['delta_north_pred_denormalized'] + north_perf
final_df['depth_pred'] = final_df['delta_depth_pred_denormalized'] + depth_perf
final = pd.concat([df, final_df], axis=1)
return final
def plot_microseismic_events(final):
fig = go.Figure(data=[go.Scatter3d(
x=final['east_pred'],
y=final['north_pred'],
z=final['depth_pred'],
mode='markers',
marker=dict(
size=3,
opacity=1,
color='red'
),
name='Predicted'
)])
# #add the predicted
# fig.add_trace(go.Scatter3d(
# x=final['east_pred'],
# y=final['north_pred'],
# z=final['depth_pred'],
# mode='markers',
# marker=dict(
# size=2,
# opacity=0.2,
# color='red'
# ),
# name='predicted'
# ))
fig.update_layout(title=f"Predicted Micro Seismic Events", xaxis_title="east", yaxis_title="north",height=800)
return fig
def compare_microseismic_events(final,actual,east,north,depth,depth_shift):
# #convert first column in final to datetime64[ns]
# final['t'] = pd.to_datetime(final['t'])
# st.write(actual[time_col])
# st.write(final.t)
# #write the type of final.t column and actual[time_col] column
# st.write(f"actual[time_col] column type: {actual[time_col].dtype}")
# st.write(f"final.t column type: {final.t.dtype}")
# #join the final and actual depending on column zero
# # joined_df = pd.merge(final, actual, left_on='t', right_on=time_col, how='outer')
# st.write(joined_df)
actual[depth] = depth_shift - actual[depth]
fig = go.Figure(data=[go.Scatter3d(
x=final['east_pred'],
y=final['north_pred'],
z=final['depth_pred'],
mode='markers',
marker=dict(
size=2,
opacity=0.3,
color='red'
),
name='Predicted'
)])
#add the actual
fig.add_trace(go.Scatter3d(
x=actual[east],
y=actual[north],
z=actual[depth],
mode='markers',
marker=dict(
size=3,
opacity=1,
color='navy'
),
name='Actual'
))
fig.update_layout(title=f"Predicted Micro Seismic Events", xaxis_title="east", yaxis_title="north",height=800)
return fig |