AmrGharieb's picture
Update app.py
616545f
raw
history blame
941 Bytes
import gradio as gr
from fastcore.all import *
from fastai.vision.all import *
from pathlib import Path
plt = platform.system()
if plt == 'Linux': pathlib.WindowsPath = pathlib.PosixPath
def classify_image(img):
learn = load_learner(str(Path('./nihal_model.pkl')))
pred,pred_idx,probs = learn.predict(img)
#return both the prediction and the probability either nihal or not and format in perccentage
return pred, "{:.0%}".format(float(probs[pred_idx])),float(probs[~pred_idx])
#return f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}'
if __name__ == '__main__':
# Define inputs and outputs for Gradio interface
inputs = [gr.Image(type="pil", label="Select an image of Nihal")]
outputs = [
gr.Label(""),
gr.Label(label="Confidence"),
]
# Launch the Gradio interface
interface = gr.Interface(fn=classify_image, inputs=inputs, outputs=outputs)
interface.launch()