File size: 13,367 Bytes
e5dd705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# Ultralytics YOLO 🚀, AGPL-3.0 license

from itertools import repeat
from multiprocessing.pool import ThreadPool
from pathlib import Path

import cv2
import numpy as np
import torch
import torchvision
from tqdm import tqdm

from ..utils import LOCAL_RANK, NUM_THREADS, TQDM_BAR_FORMAT, is_dir_writeable
from .augment import Compose, Format, Instances, LetterBox, classify_albumentations, classify_transforms, v8_transforms
from .base import BaseDataset
from .utils import HELP_URL, LOGGER, get_hash, img2label_paths, verify_image_label


class YOLODataset(BaseDataset):
    """
    Dataset class for loading object detection and/or segmentation labels in YOLO format.

    Args:
        data (dict, optional): A dataset YAML dictionary. Defaults to None.
        use_segments (bool, optional): If True, segmentation masks are used as labels. Defaults to False.
        use_keypoints (bool, optional): If True, keypoints are used as labels. Defaults to False.

    Returns:
        (torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model.
    """
    cache_version = '1.0.2'  # dataset labels *.cache version, >= 1.0.0 for YOLOv8
    rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]

    def __init__(self, *args, data=None, use_segments=False, use_keypoints=False, **kwargs):
        self.use_segments = use_segments
        self.use_keypoints = use_keypoints
        self.data = data
        assert not (self.use_segments and self.use_keypoints), 'Can not use both segments and keypoints.'
        super().__init__(*args, **kwargs)

    def cache_labels(self, path=Path('./labels.cache')):
        """Cache dataset labels, check images and read shapes.
        Args:
            path (Path): path where to save the cache file (default: Path('./labels.cache')).
        Returns:
            (dict): labels.
        """
        x = {'labels': []}
        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
        desc = f'{self.prefix}Scanning {path.parent / path.stem}...'
        total = len(self.im_files)
        nkpt, ndim = self.data.get('kpt_shape', (0, 0))
        if self.use_keypoints and (nkpt <= 0 or ndim not in (2, 3)):
            raise ValueError("'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of "
                             "keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'")
        with ThreadPool(NUM_THREADS) as pool:
            results = pool.imap(func=verify_image_label,
                                iterable=zip(self.im_files, self.label_files, repeat(self.prefix),
                                             repeat(self.use_keypoints), repeat(len(self.data['names'])), repeat(nkpt),
                                             repeat(ndim)))
            pbar = tqdm(results, desc=desc, total=total, bar_format=TQDM_BAR_FORMAT)
            for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar:
                nm += nm_f
                nf += nf_f
                ne += ne_f
                nc += nc_f
                if im_file:
                    x['labels'].append(
                        dict(
                            im_file=im_file,
                            shape=shape,
                            cls=lb[:, 0:1],  # n, 1
                            bboxes=lb[:, 1:],  # n, 4
                            segments=segments,
                            keypoints=keypoint,
                            normalized=True,
                            bbox_format='xywh'))
                if msg:
                    msgs.append(msg)
                pbar.desc = f'{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt'
            pbar.close()

        if msgs:
            LOGGER.info('\n'.join(msgs))
        if nf == 0:
            LOGGER.warning(f'{self.prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}')
        x['hash'] = get_hash(self.label_files + self.im_files)
        x['results'] = nf, nm, ne, nc, len(self.im_files)
        x['msgs'] = msgs  # warnings
        x['version'] = self.cache_version  # cache version
        if is_dir_writeable(path.parent):
            if path.exists():
                path.unlink()  # remove *.cache file if exists
            np.save(str(path), x)  # save cache for next time
            path.with_suffix('.cache.npy').rename(path)  # remove .npy suffix
            LOGGER.info(f'{self.prefix}New cache created: {path}')
        else:
            LOGGER.warning(f'{self.prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable, cache not saved.')
        return x

    def get_labels(self):
        """Returns dictionary of labels for YOLO training."""
        self.label_files = img2label_paths(self.im_files)
        cache_path = Path(self.label_files[0]).parent.with_suffix('.cache')
        try:
            import gc
            gc.disable()  # reduce pickle load time https://github.com/ultralytics/ultralytics/pull/1585
            cache, exists = np.load(str(cache_path), allow_pickle=True).item(), True  # load dict
            gc.enable()
            assert cache['version'] == self.cache_version  # matches current version
            assert cache['hash'] == get_hash(self.label_files + self.im_files)  # identical hash
        except (FileNotFoundError, AssertionError, AttributeError):
            cache, exists = self.cache_labels(cache_path), False  # run cache ops

        # Display cache
        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupt, total
        if exists and LOCAL_RANK in (-1, 0):
            d = f'Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt'
            tqdm(None, desc=self.prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT)  # display cache results
            if cache['msgs']:
                LOGGER.info('\n'.join(cache['msgs']))  # display warnings
        if nf == 0:  # number of labels found
            raise FileNotFoundError(f'{self.prefix}No labels found in {cache_path}, can not start training. {HELP_URL}')

        # Read cache
        [cache.pop(k) for k in ('hash', 'version', 'msgs')]  # remove items
        labels = cache['labels']
        self.im_files = [lb['im_file'] for lb in labels]  # update im_files

        # Check if the dataset is all boxes or all segments
        lengths = ((len(lb['cls']), len(lb['bboxes']), len(lb['segments'])) for lb in labels)
        len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths))
        if len_segments and len_boxes != len_segments:
            LOGGER.warning(
                f'WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, '
                f'len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. '
                'To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset.')
            for lb in labels:
                lb['segments'] = []
        if len_cls == 0:
            raise ValueError(f'All labels empty in {cache_path}, can not start training without labels. {HELP_URL}')
        return labels

    # TODO: use hyp config to set all these augmentations
    def build_transforms(self, hyp=None):
        """Builds and appends transforms to the list."""
        if self.augment:
            hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
            hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
            transforms = v8_transforms(self, self.imgsz, hyp)
        else:
            transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)])
        transforms.append(
            Format(bbox_format='xywh',
                   normalize=True,
                   return_mask=self.use_segments,
                   return_keypoint=self.use_keypoints,
                   batch_idx=True,
                   mask_ratio=hyp.mask_ratio,
                   mask_overlap=hyp.overlap_mask))
        return transforms

    def close_mosaic(self, hyp):
        """Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations."""
        hyp.mosaic = 0.0  # set mosaic ratio=0.0
        hyp.copy_paste = 0.0  # keep the same behavior as previous v8 close-mosaic
        hyp.mixup = 0.0  # keep the same behavior as previous v8 close-mosaic
        self.transforms = self.build_transforms(hyp)

    def update_labels_info(self, label):
        """custom your label format here."""
        # NOTE: cls is not with bboxes now, classification and semantic segmentation need an independent cls label
        # we can make it also support classification and semantic segmentation by add or remove some dict keys there.
        bboxes = label.pop('bboxes')
        segments = label.pop('segments')
        keypoints = label.pop('keypoints', None)
        bbox_format = label.pop('bbox_format')
        normalized = label.pop('normalized')
        label['instances'] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)
        return label

    @staticmethod
    def collate_fn(batch):
        """Collates data samples into batches."""
        new_batch = {}
        keys = batch[0].keys()
        values = list(zip(*[list(b.values()) for b in batch]))
        for i, k in enumerate(keys):
            value = values[i]
            if k == 'img':
                value = torch.stack(value, 0)
            if k in ['masks', 'keypoints', 'bboxes', 'cls']:
                value = torch.cat(value, 0)
            new_batch[k] = value
        new_batch['batch_idx'] = list(new_batch['batch_idx'])
        for i in range(len(new_batch['batch_idx'])):
            new_batch['batch_idx'][i] += i  # add target image index for build_targets()
        new_batch['batch_idx'] = torch.cat(new_batch['batch_idx'], 0)
        return new_batch


# Classification dataloaders -------------------------------------------------------------------------------------------
class ClassificationDataset(torchvision.datasets.ImageFolder):
    """
    YOLO Classification Dataset.

    Args:
        root (str): Dataset path.

    Attributes:
        cache_ram (bool): True if images should be cached in RAM, False otherwise.
        cache_disk (bool): True if images should be cached on disk, False otherwise.
        samples (list): List of samples containing file, index, npy, and im.
        torch_transforms (callable): torchvision transforms applied to the dataset.
        album_transforms (callable, optional): Albumentations transforms applied to the dataset if augment is True.
    """

    def __init__(self, root, args, augment=False, cache=False):
        """
        Initialize YOLO object with root, image size, augmentations, and cache settings.

        Args:
            root (str): Dataset path.
            args (Namespace): Argument parser containing dataset related settings.
            augment (bool, optional): True if dataset should be augmented, False otherwise. Defaults to False.
            cache (bool | str | optional): Cache setting, can be True, False, 'ram' or 'disk'. Defaults to False.
        """
        super().__init__(root=root)
        if augment and args.fraction < 1.0:  # reduce training fraction
            self.samples = self.samples[:round(len(self.samples) * args.fraction)]
        self.cache_ram = cache is True or cache == 'ram'
        self.cache_disk = cache == 'disk'
        self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples]  # file, index, npy, im
        self.torch_transforms = classify_transforms(args.imgsz)
        self.album_transforms = classify_albumentations(
            augment=augment,
            size=args.imgsz,
            scale=(1.0 - args.scale, 1.0),  # (0.08, 1.0)
            hflip=args.fliplr,
            vflip=args.flipud,
            hsv_h=args.hsv_h,  # HSV-Hue augmentation (fraction)
            hsv_s=args.hsv_s,  # HSV-Saturation augmentation (fraction)
            hsv_v=args.hsv_v,  # HSV-Value augmentation (fraction)
            mean=(0.0, 0.0, 0.0),  # IMAGENET_MEAN
            std=(1.0, 1.0, 1.0),  # IMAGENET_STD
            auto_aug=False) if augment else None

    def __getitem__(self, i):
        """Returns subset of data and targets corresponding to given indices."""
        f, j, fn, im = self.samples[i]  # filename, index, filename.with_suffix('.npy'), image
        if self.cache_ram and im is None:
            im = self.samples[i][3] = cv2.imread(f)
        elif self.cache_disk:
            if not fn.exists():  # load npy
                np.save(fn.as_posix(), cv2.imread(f))
            im = np.load(fn)
        else:  # read image
            im = cv2.imread(f)  # BGR
        if self.album_transforms:
            sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))['image']
        else:
            sample = self.torch_transforms(im)
        return {'img': sample, 'cls': j}

    def __len__(self) -> int:
        return len(self.samples)


# TODO: support semantic segmentation
class SemanticDataset(BaseDataset):

    def __init__(self):
        """Initialize a SemanticDataset object."""
        super().__init__()