Spaces:
Sleeping
Sleeping
File size: 24,052 Bytes
e5dd705 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import hashlib
import json
import os
import subprocess
import time
import zipfile
from multiprocessing.pool import ThreadPool
from pathlib import Path
from tarfile import is_tarfile
import cv2
import numpy as np
from PIL import ExifTags, Image, ImageOps
from tqdm import tqdm
from ultralytics.nn.autobackend import check_class_names
from ultralytics.yolo.utils import (DATASETS_DIR, LOGGER, NUM_THREADS, ROOT, SETTINGS_YAML, clean_url, colorstr, emojis,
yaml_load)
from ultralytics.yolo.utils.checks import check_file, check_font, is_ascii
from ultralytics.yolo.utils.downloads import download, safe_download, unzip_file
from ultralytics.yolo.utils.ops import segments2boxes
HELP_URL = 'See https://docs.ultralytics.com/yolov5/tutorials/train_custom_data'
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # image suffixes
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv', 'webm' # video suffixes
PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
# Get orientation exif tag
for orientation in ExifTags.TAGS.keys():
if ExifTags.TAGS[orientation] == 'Orientation':
break
def img2label_paths(img_paths):
"""Define label paths as a function of image paths."""
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
def get_hash(paths):
"""Returns a single hash value of a list of paths (files or dirs)."""
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
h = hashlib.sha256(str(size).encode()) # hash sizes
h.update(''.join(paths).encode()) # hash paths
return h.hexdigest() # return hash
def exif_size(img):
"""Returns exif-corrected PIL size."""
s = img.size # (width, height)
with contextlib.suppress(Exception):
rotation = dict(img._getexif().items())[orientation]
if rotation in [6, 8]: # rotation 270 or 90
s = (s[1], s[0])
return s
def verify_image_label(args):
"""Verify one image-label pair."""
im_file, lb_file, prefix, keypoint, num_cls, nkpt, ndim = args
# Number (missing, found, empty, corrupt), message, segments, keypoints
nm, nf, ne, nc, msg, segments, keypoints = 0, 0, 0, 0, '', [], None
try:
# Verify images
im = Image.open(im_file)
im.verify() # PIL verify
shape = exif_size(im) # image size
shape = (shape[1], shape[0]) # hw
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
if im.format.lower() in ('jpg', 'jpeg'):
with open(im_file, 'rb') as f:
f.seek(-2, 2)
if f.read() != b'\xff\xd9': # corrupt JPEG
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved'
# Verify labels
if os.path.isfile(lb_file):
nf = 1 # label found
with open(lb_file) as f:
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
if any(len(x) > 6 for x in lb) and (not keypoint): # is segment
classes = np.array([x[0] for x in lb], dtype=np.float32)
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
lb = np.array(lb, dtype=np.float32)
nl = len(lb)
if nl:
if keypoint:
assert lb.shape[1] == (5 + nkpt * ndim), f'labels require {(5 + nkpt * ndim)} columns each'
assert (lb[:, 5::ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
assert (lb[:, 6::ndim] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
else:
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
assert (lb[:, 1:] <= 1).all(), \
f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
# All labels
max_cls = int(lb[:, 0].max()) # max label count
assert max_cls <= num_cls, \
f'Label class {max_cls} exceeds dataset class count {num_cls}. ' \
f'Possible class labels are 0-{num_cls - 1}'
_, i = np.unique(lb, axis=0, return_index=True)
if len(i) < nl: # duplicate row check
lb = lb[i] # remove duplicates
if segments:
segments = [segments[x] for x in i]
msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed'
else:
ne = 1 # label empty
lb = np.zeros((0, (5 + nkpt * ndim)), dtype=np.float32) if keypoint else np.zeros(
(0, 5), dtype=np.float32)
else:
nm = 1 # label missing
lb = np.zeros((0, (5 + nkpt * ndim)), dtype=np.float32) if keypoint else np.zeros((0, 5), dtype=np.float32)
if keypoint:
keypoints = lb[:, 5:].reshape(-1, nkpt, ndim)
if ndim == 2:
kpt_mask = np.ones(keypoints.shape[:2], dtype=np.float32)
kpt_mask = np.where(keypoints[..., 0] < 0, 0.0, kpt_mask)
kpt_mask = np.where(keypoints[..., 1] < 0, 0.0, kpt_mask)
keypoints = np.concatenate([keypoints, kpt_mask[..., None]], axis=-1) # (nl, nkpt, 3)
lb = lb[:, :5]
return im_file, lb, shape, segments, keypoints, nm, nf, ne, nc, msg
except Exception as e:
nc = 1
msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}'
return [None, None, None, None, None, nm, nf, ne, nc, msg]
def polygon2mask(imgsz, polygons, color=1, downsample_ratio=1):
"""
Args:
imgsz (tuple): The image size.
polygons (list[np.ndarray]): [N, M], N is the number of polygons, M is the number of points(Be divided by 2).
color (int): color
downsample_ratio (int): downsample ratio
"""
mask = np.zeros(imgsz, dtype=np.uint8)
polygons = np.asarray(polygons)
polygons = polygons.astype(np.int32)
shape = polygons.shape
polygons = polygons.reshape(shape[0], -1, 2)
cv2.fillPoly(mask, polygons, color=color)
nh, nw = (imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio)
# NOTE: fillPoly firstly then resize is trying the keep the same way
# of loss calculation when mask-ratio=1.
mask = cv2.resize(mask, (nw, nh))
return mask
def polygons2masks(imgsz, polygons, color, downsample_ratio=1):
"""
Args:
imgsz (tuple): The image size.
polygons (list[np.ndarray]): each polygon is [N, M], N is number of polygons, M is number of points (M % 2 = 0)
color (int): color
downsample_ratio (int): downsample ratio
"""
masks = []
for si in range(len(polygons)):
mask = polygon2mask(imgsz, [polygons[si].reshape(-1)], color, downsample_ratio)
masks.append(mask)
return np.array(masks)
def polygons2masks_overlap(imgsz, segments, downsample_ratio=1):
"""Return a (640, 640) overlap mask."""
masks = np.zeros((imgsz[0] // downsample_ratio, imgsz[1] // downsample_ratio),
dtype=np.int32 if len(segments) > 255 else np.uint8)
areas = []
ms = []
for si in range(len(segments)):
mask = polygon2mask(imgsz, [segments[si].reshape(-1)], downsample_ratio=downsample_ratio, color=1)
ms.append(mask)
areas.append(mask.sum())
areas = np.asarray(areas)
index = np.argsort(-areas)
ms = np.array(ms)[index]
for i in range(len(segments)):
mask = ms[i] * (i + 1)
masks = masks + mask
masks = np.clip(masks, a_min=0, a_max=i + 1)
return masks, index
def check_det_dataset(dataset, autodownload=True):
"""Download, check and/or unzip dataset if not found locally."""
data = check_file(dataset)
# Download (optional)
extract_dir = ''
if isinstance(data, (str, Path)) and (zipfile.is_zipfile(data) or is_tarfile(data)):
new_dir = safe_download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False)
data = next((DATASETS_DIR / new_dir).rglob('*.yaml'))
extract_dir, autodownload = data.parent, False
# Read yaml (optional)
if isinstance(data, (str, Path)):
data = yaml_load(data, append_filename=True) # dictionary
# Checks
for k in 'train', 'val':
if k not in data:
raise SyntaxError(
emojis(f"{dataset} '{k}:' key missing ❌.\n'train' and 'val' are required in all data YAMLs."))
if 'names' not in data and 'nc' not in data:
raise SyntaxError(emojis(f"{dataset} key missing ❌.\n either 'names' or 'nc' are required in all data YAMLs."))
if 'names' in data and 'nc' in data and len(data['names']) != data['nc']:
raise SyntaxError(emojis(f"{dataset} 'names' length {len(data['names'])} and 'nc: {data['nc']}' must match."))
if 'names' not in data:
data['names'] = [f'class_{i}' for i in range(data['nc'])]
else:
data['nc'] = len(data['names'])
data['names'] = check_class_names(data['names'])
# Resolve paths
path = Path(extract_dir or data.get('path') or Path(data.get('yaml_file', '')).parent) # dataset root
if not path.is_absolute():
path = (DATASETS_DIR / path).resolve()
data['path'] = path # download scripts
for k in 'train', 'val', 'test':
if data.get(k): # prepend path
if isinstance(data[k], str):
x = (path / data[k]).resolve()
if not x.exists() and data[k].startswith('../'):
x = (path / data[k][3:]).resolve()
data[k] = str(x)
else:
data[k] = [str((path / x).resolve()) for x in data[k]]
# Parse yaml
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
if val:
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
if not all(x.exists() for x in val):
name = clean_url(dataset) # dataset name with URL auth stripped
m = f"\nDataset '{name}' images not found ⚠️, missing paths %s" % [str(x) for x in val if not x.exists()]
if s and autodownload:
LOGGER.warning(m)
else:
m += f"\nNote dataset download directory is '{DATASETS_DIR}'. You can update this in '{SETTINGS_YAML}'"
raise FileNotFoundError(m)
t = time.time()
if s.startswith('http') and s.endswith('.zip'): # URL
safe_download(url=s, dir=DATASETS_DIR, delete=True)
r = None # success
elif s.startswith('bash '): # bash script
LOGGER.info(f'Running {s} ...')
r = os.system(s)
else: # python script
r = exec(s, {'yaml': data}) # return None
dt = f'({round(time.time() - t, 1)}s)'
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f'failure {dt} ❌'
LOGGER.info(f'Dataset download {s}\n')
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf') # download fonts
return data # dictionary
def check_cls_dataset(dataset: str, split=''):
"""
Check a classification dataset such as Imagenet.
This function takes a `dataset` name as input and returns a dictionary containing information about the dataset.
If the dataset is not found, it attempts to download the dataset from the internet and save it locally.
Args:
dataset (str): Name of the dataset.
split (str, optional): Dataset split, either 'val', 'test', or ''. Defaults to ''.
Returns:
data (dict): A dictionary containing the following keys and values:
'train': Path object for the directory containing the training set of the dataset
'val': Path object for the directory containing the validation set of the dataset
'test': Path object for the directory containing the test set of the dataset
'nc': Number of classes in the dataset
'names': List of class names in the dataset
"""
data_dir = (DATASETS_DIR / dataset).resolve()
if not data_dir.is_dir():
LOGGER.info(f'\nDataset not found ⚠️, missing path {data_dir}, attempting download...')
t = time.time()
if dataset == 'imagenet':
subprocess.run(f"bash {ROOT / 'yolo/data/scripts/get_imagenet.sh'}", shell=True, check=True)
else:
url = f'https://github.com/ultralytics/yolov5/releases/download/v1.0/{dataset}.zip'
download(url, dir=data_dir.parent)
s = f"Dataset download success ✅ ({time.time() - t:.1f}s), saved to {colorstr('bold', data_dir)}\n"
LOGGER.info(s)
train_set = data_dir / 'train'
val_set = data_dir / 'val' if (data_dir / 'val').exists() else None # data/test or data/val
test_set = data_dir / 'test' if (data_dir / 'test').exists() else None # data/val or data/test
if split == 'val' and not val_set:
LOGGER.info("WARNING ⚠️ Dataset 'split=val' not found, using 'split=test' instead.")
elif split == 'test' and not test_set:
LOGGER.info("WARNING ⚠️ Dataset 'split=test' not found, using 'split=val' instead.")
nc = len([x for x in (data_dir / 'train').glob('*') if x.is_dir()]) # number of classes
names = [x.name for x in (data_dir / 'train').iterdir() if x.is_dir()] # class names list
names = dict(enumerate(sorted(names)))
return {'train': train_set, 'val': val_set or test_set, 'test': test_set or val_set, 'nc': nc, 'names': names}
class HUBDatasetStats():
"""
Class for generating HUB dataset JSON and `-hub` dataset directory
Arguments
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
task: Dataset task. Options are 'detect', 'segment', 'pose', 'classify'.
autodownload: Attempt to download dataset if not found locally
Usage
from ultralytics.yolo.data.utils import HUBDatasetStats
stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8.zip', task='detect') # detect dataset
stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8-seg.zip', task='segment') # segment dataset
stats = HUBDatasetStats('/Users/glennjocher/Downloads/coco8-pose.zip', task='pose') # pose dataset
stats.get_json(save=False)
stats.process_images()
"""
def __init__(self, path='coco128.yaml', task='detect', autodownload=False):
"""Initialize class."""
LOGGER.info(f'Starting HUB dataset checks for {path}....')
zipped, data_dir, yaml_path = self._unzip(Path(path))
try:
# data = yaml_load(check_yaml(yaml_path)) # data dict
data = check_det_dataset(yaml_path, autodownload) # data dict
if zipped:
data['path'] = data_dir
except Exception as e:
raise Exception('error/HUB/dataset_stats/yaml_load') from e
self.hub_dir = Path(str(data['path']) + '-hub')
self.im_dir = self.hub_dir / 'images'
self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images
self.stats = {'nc': len(data['names']), 'names': list(data['names'].values())} # statistics dictionary
self.data = data
self.task = task # detect, segment, pose, classify
@staticmethod
def _find_yaml(dir):
"""Return data.yaml file."""
files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive
assert files, f'No *.yaml file found in {dir}'
if len(files) > 1:
files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name
assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
return files[0]
def _unzip(self, path):
"""Unzip data.zip."""
if not str(path).endswith('.zip'): # path is data.yaml
return False, None, path
unzip_dir = unzip_file(path, path=path.parent)
assert unzip_dir.is_dir(), f'Error unzipping {path}, {unzip_dir} not found. ' \
f'path/to/abc.zip MUST unzip to path/to/abc/'
return True, str(unzip_dir), self._find_yaml(unzip_dir) # zipped, data_dir, yaml_path
def _hub_ops(self, f):
"""Saves a compressed image for HUB previews."""
compress_one_image(f, self.im_dir / Path(f).name) # save to dataset-hub
def get_json(self, save=False, verbose=False):
"""Return dataset JSON for Ultralytics HUB."""
from ultralytics.yolo.data import YOLODataset # ClassificationDataset
def _round(labels):
"""Update labels to integer class and 4 decimal place floats."""
if self.task == 'detect':
coordinates = labels['bboxes']
elif self.task == 'segment':
coordinates = [x.flatten() for x in labels['segments']]
elif self.task == 'pose':
n = labels['keypoints'].shape[0]
coordinates = np.concatenate((labels['bboxes'], labels['keypoints'].reshape(n, -1)), 1)
else:
raise ValueError('Undefined dataset task.')
zipped = zip(labels['cls'], coordinates)
return [[int(c), *(round(float(x), 4) for x in points)] for c, points in zipped]
for split in 'train', 'val', 'test':
if self.data.get(split) is None:
self.stats[split] = None # i.e. no test set
continue
dataset = YOLODataset(img_path=self.data[split],
data=self.data,
use_segments=self.task == 'segment',
use_keypoints=self.task == 'pose')
x = np.array([
np.bincount(label['cls'].astype(int).flatten(), minlength=self.data['nc'])
for label in tqdm(dataset.labels, total=len(dataset), desc='Statistics')]) # shape(128x80)
self.stats[split] = {
'instance_stats': {
'total': int(x.sum()),
'per_class': x.sum(0).tolist()},
'image_stats': {
'total': len(dataset),
'unlabelled': int(np.all(x == 0, 1).sum()),
'per_class': (x > 0).sum(0).tolist()},
'labels': [{
Path(k).name: _round(v)} for k, v in zip(dataset.im_files, dataset.labels)]}
# Save, print and return
if save:
stats_path = self.hub_dir / 'stats.json'
LOGGER.info(f'Saving {stats_path.resolve()}...')
with open(stats_path, 'w') as f:
json.dump(self.stats, f) # save stats.json
if verbose:
LOGGER.info(json.dumps(self.stats, indent=2, sort_keys=False))
return self.stats
def process_images(self):
"""Compress images for Ultralytics HUB."""
from ultralytics.yolo.data import YOLODataset # ClassificationDataset
for split in 'train', 'val', 'test':
if self.data.get(split) is None:
continue
dataset = YOLODataset(img_path=self.data[split], data=self.data)
with ThreadPool(NUM_THREADS) as pool:
for _ in tqdm(pool.imap(self._hub_ops, dataset.im_files), total=len(dataset), desc=f'{split} images'):
pass
LOGGER.info(f'Done. All images saved to {self.im_dir}')
return self.im_dir
def compress_one_image(f, f_new=None, max_dim=1920, quality=50):
"""
Compresses a single image file to reduced size while preserving its aspect ratio and quality using either the
Python Imaging Library (PIL) or OpenCV library. If the input image is smaller than the maximum dimension, it will
not be resized.
Args:
f (str): The path to the input image file.
f_new (str, optional): The path to the output image file. If not specified, the input file will be overwritten.
max_dim (int, optional): The maximum dimension (width or height) of the output image. Default is 1920 pixels.
quality (int, optional): The image compression quality as a percentage. Default is 50%.
Usage:
from pathlib import Path
from ultralytics.yolo.data.utils import compress_one_image
for f in Path('/Users/glennjocher/Downloads/dataset').rglob('*.jpg'):
compress_one_image(f)
"""
try: # use PIL
im = Image.open(f)
r = max_dim / max(im.height, im.width) # ratio
if r < 1.0: # image too large
im = im.resize((int(im.width * r), int(im.height * r)))
im.save(f_new or f, 'JPEG', quality=quality, optimize=True) # save
except Exception as e: # use OpenCV
LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}')
im = cv2.imread(f)
im_height, im_width = im.shape[:2]
r = max_dim / max(im_height, im_width) # ratio
if r < 1.0: # image too large
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
cv2.imwrite(str(f_new or f), im)
def delete_dsstore(path):
"""
Deletes all ".DS_store" files under a specified directory.
Args:
path (str, optional): The directory path where the ".DS_store" files should be deleted.
Usage:
from ultralytics.yolo.data.utils import delete_dsstore
delete_dsstore('/Users/glennjocher/Downloads/dataset')
Note:
".DS_store" files are created by the Apple operating system and contain metadata about folders and files. They
are hidden system files and can cause issues when transferring files between different operating systems.
"""
# Delete Apple .DS_store files
files = list(Path(path).rglob('.DS_store'))
LOGGER.info(f'Deleting *.DS_store files: {files}')
for f in files:
f.unlink()
def zip_directory(dir, use_zipfile_library=True):
"""
Zips a directory and saves the archive to the specified output path.
Args:
dir (str): The path to the directory to be zipped.
use_zipfile_library (bool): Whether to use zipfile library or shutil for zipping.
Usage:
from ultralytics.yolo.data.utils import zip_directory
zip_directory('/Users/glennjocher/Downloads/playground')
zip -r coco8-pose.zip coco8-pose
"""
delete_dsstore(dir)
if use_zipfile_library:
dir = Path(dir)
with zipfile.ZipFile(dir.with_suffix('.zip'), 'w', zipfile.ZIP_DEFLATED) as zip_file:
for file_path in dir.glob('**/*'):
if file_path.is_file():
zip_file.write(file_path, file_path.relative_to(dir))
else:
import shutil
shutil.make_archive(dir, 'zip', dir)
|