File size: 17,593 Bytes
e5dd705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import glob
import inspect
import math
import os
import platform
import re
import shutil
import subprocess
from pathlib import Path
from typing import Optional

import cv2
import numpy as np
import pkg_resources as pkg
import psutil
import requests
import torch
from matplotlib import font_manager

from ultralytics.yolo.utils import (AUTOINSTALL, LOGGER, ONLINE, ROOT, USER_CONFIG_DIR, TryExcept, clean_url, colorstr,
                                    downloads, emojis, is_colab, is_docker, is_jupyter, is_kaggle, is_online,
                                    is_pip_package, url2file)


def is_ascii(s) -> bool:
    """
    Check if a string is composed of only ASCII characters.

    Args:
        s (str): String to be checked.

    Returns:
        bool: True if the string is composed only of ASCII characters, False otherwise.
    """
    # Convert list, tuple, None, etc. to string
    s = str(s)

    # Check if the string is composed of only ASCII characters
    return all(ord(c) < 128 for c in s)


def check_imgsz(imgsz, stride=32, min_dim=1, max_dim=2, floor=0):
    """
    Verify image size is a multiple of the given stride in each dimension. If the image size is not a multiple of the
    stride, update it to the nearest multiple of the stride that is greater than or equal to the given floor value.

    Args:
        imgsz (int | cList[int]): Image size.
        stride (int): Stride value.
        min_dim (int): Minimum number of dimensions.
        floor (int): Minimum allowed value for image size.

    Returns:
        (List[int]): Updated image size.
    """
    # Convert stride to integer if it is a tensor
    stride = int(stride.max() if isinstance(stride, torch.Tensor) else stride)

    # Convert image size to list if it is an integer
    if isinstance(imgsz, int):
        imgsz = [imgsz]
    elif isinstance(imgsz, (list, tuple)):
        imgsz = list(imgsz)
    else:
        raise TypeError(f"'imgsz={imgsz}' is of invalid type {type(imgsz).__name__}. "
                        f"Valid imgsz types are int i.e. 'imgsz=640' or list i.e. 'imgsz=[640,640]'")

    # Apply max_dim
    if len(imgsz) > max_dim:
        msg = "'train' and 'val' imgsz must be an integer, while 'predict' and 'export' imgsz may be a [h, w] list " \
              "or an integer, i.e. 'yolo export imgsz=640,480' or 'yolo export imgsz=640'"
        if max_dim != 1:
            raise ValueError(f'imgsz={imgsz} is not a valid image size. {msg}')
        LOGGER.warning(f"WARNING ⚠️ updating to 'imgsz={max(imgsz)}'. {msg}")
        imgsz = [max(imgsz)]
    # Make image size a multiple of the stride
    sz = [max(math.ceil(x / stride) * stride, floor) for x in imgsz]

    # Print warning message if image size was updated
    if sz != imgsz:
        LOGGER.warning(f'WARNING ⚠️ imgsz={imgsz} must be multiple of max stride {stride}, updating to {sz}')

    # Add missing dimensions if necessary
    sz = [sz[0], sz[0]] if min_dim == 2 and len(sz) == 1 else sz[0] if min_dim == 1 and len(sz) == 1 else sz

    return sz


def check_version(current: str = '0.0.0',
                  minimum: str = '0.0.0',
                  name: str = 'version ',
                  pinned: bool = False,
                  hard: bool = False,
                  verbose: bool = False) -> bool:
    """
    Check current version against the required minimum version.

    Args:
        current (str): Current version.
        minimum (str): Required minimum version.
        name (str): Name to be used in warning message.
        pinned (bool): If True, versions must match exactly. If False, minimum version must be satisfied.
        hard (bool): If True, raise an AssertionError if the minimum version is not met.
        verbose (bool): If True, print warning message if minimum version is not met.

    Returns:
        (bool): True if minimum version is met, False otherwise.
    """
    current, minimum = (pkg.parse_version(x) for x in (current, minimum))
    result = (current == minimum) if pinned else (current >= minimum)  # bool
    warning_message = f'WARNING ⚠️ {name}{minimum} is required by YOLOv8, but {name}{current} is currently installed'
    if hard:
        assert result, emojis(warning_message)  # assert min requirements met
    if verbose and not result:
        LOGGER.warning(warning_message)
    return result


def check_latest_pypi_version(package_name='ultralytics'):
    """
    Returns the latest version of a PyPI package without downloading or installing it.

    Parameters:
        package_name (str): The name of the package to find the latest version for.

    Returns:
        (str): The latest version of the package.
    """
    with contextlib.suppress(Exception):
        requests.packages.urllib3.disable_warnings()  # Disable the InsecureRequestWarning
        response = requests.get(f'https://pypi.org/pypi/{package_name}/json', timeout=3)
        if response.status_code == 200:
            return response.json()['info']['version']
    return None


def check_pip_update_available():
    """
    Checks if a new version of the ultralytics package is available on PyPI.

    Returns:
        (bool): True if an update is available, False otherwise.
    """
    if ONLINE and is_pip_package():
        with contextlib.suppress(Exception):
            from ultralytics import __version__
            latest = check_latest_pypi_version()
            if pkg.parse_version(__version__) < pkg.parse_version(latest):  # update is available
                LOGGER.info(f'New https://pypi.org/project/ultralytics/{latest} available 😃 '
                            f"Update with 'pip install -U ultralytics'")
                return True
    return False


def check_font(font='Arial.ttf'):
    """
    Find font locally or download to user's configuration directory if it does not already exist.

    Args:
        font (str): Path or name of font.

    Returns:
        file (Path): Resolved font file path.
    """
    name = Path(font).name

    # Check USER_CONFIG_DIR
    file = USER_CONFIG_DIR / name
    if file.exists():
        return file

    # Check system fonts
    matches = [s for s in font_manager.findSystemFonts() if font in s]
    if any(matches):
        return matches[0]

    # Download to USER_CONFIG_DIR if missing
    url = f'https://ultralytics.com/assets/{name}'
    if downloads.is_url(url):
        downloads.safe_download(url=url, file=file)
        return file


def check_python(minimum: str = '3.7.0') -> bool:
    """
    Check current python version against the required minimum version.

    Args:
        minimum (str): Required minimum version of python.

    Returns:
        None
    """
    return check_version(platform.python_version(), minimum, name='Python ', hard=True)


@TryExcept()
def check_requirements(requirements=ROOT.parent / 'requirements.txt', exclude=(), install=True, cmds=''):
    """
    Check if installed dependencies meet YOLOv8 requirements and attempt to auto-update if needed.

    Args:
        requirements (Union[Path, str, List[str]]): Path to a requirements.txt file, a single package requirement as a
            string, or a list of package requirements as strings.
        exclude (Tuple[str]): Tuple of package names to exclude from checking.
        install (bool): If True, attempt to auto-update packages that don't meet requirements.
        cmds (str): Additional commands to pass to the pip install command when auto-updating.
    """
    prefix = colorstr('red', 'bold', 'requirements:')
    check_python()  # check python version
    file = None
    if isinstance(requirements, Path):  # requirements.txt file
        file = requirements.resolve()
        assert file.exists(), f'{prefix} {file} not found, check failed.'
        with file.open() as f:
            requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
    elif isinstance(requirements, str):
        requirements = [requirements]

    s = ''  # console string
    n = 0  # number of packages updates
    for r in requirements:
        try:
            pkg.require(r)
        except (pkg.VersionConflict, pkg.DistributionNotFound):  # exception if requirements not met
            try:  # attempt to import (slower but more accurate)
                import importlib
                importlib.import_module(next(pkg.parse_requirements(r)).name)
            except ImportError:
                s += f'"{r}" '
                n += 1

    if s:
        if install and AUTOINSTALL:  # check environment variable
            LOGGER.info(f"{prefix} Ultralytics requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...")
            try:
                assert is_online(), 'AutoUpdate skipped (offline)'
                LOGGER.info(subprocess.check_output(f'pip install --no-cache {s} {cmds}', shell=True).decode())
                s = f"{prefix} {n} package{'s' * (n > 1)} updated per {file or requirements}\n" \
                    f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
                LOGGER.info(s)
            except Exception as e:
                LOGGER.warning(f'{prefix}{e}')
                return False
        else:
            return False

    return True


def check_suffix(file='yolov8n.pt', suffix='.pt', msg=''):
    """Check file(s) for acceptable suffix."""
    if file and suffix:
        if isinstance(suffix, str):
            suffix = (suffix, )
        for f in file if isinstance(file, (list, tuple)) else [file]:
            s = Path(f).suffix.lower().strip()  # file suffix
            if len(s):
                assert s in suffix, f'{msg}{f} acceptable suffix is {suffix}, not {s}'


def check_yolov5u_filename(file: str, verbose: bool = True):
    """Replace legacy YOLOv5 filenames with updated YOLOv5u filenames."""
    if ('yolov3' in file or 'yolov5' in file) and 'u' not in file:
        original_file = file
        file = re.sub(r'(.*yolov5([nsmlx]))\.pt', '\\1u.pt', file)  # i.e. yolov5n.pt -> yolov5nu.pt
        file = re.sub(r'(.*yolov5([nsmlx])6)\.pt', '\\1u.pt', file)  # i.e. yolov5n6.pt -> yolov5n6u.pt
        file = re.sub(r'(.*yolov3(|-tiny|-spp))\.pt', '\\1u.pt', file)  # i.e. yolov3-spp.pt -> yolov3-sppu.pt
        if file != original_file and verbose:
            LOGGER.info(f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
                        f'trained with https://github.com/ultralytics/ultralytics and feature improved performance vs '
                        f'standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n')
    return file


def check_file(file, suffix='', download=True, hard=True):
    """Search/download file (if necessary) and return path."""
    check_suffix(file, suffix)  # optional
    file = str(file).strip()  # convert to string and strip spaces
    file = check_yolov5u_filename(file)  # yolov5n -> yolov5nu
    if not file or ('://' not in file and Path(file).exists()):  # exists ('://' check required in Windows Python<3.10)
        return file
    elif download and file.lower().startswith(('https://', 'http://', 'rtsp://', 'rtmp://')):  # download
        url = file  # warning: Pathlib turns :// -> :/
        file = url2file(file)  # '%2F' to '/', split https://url.com/file.txt?auth
        if Path(file).exists():
            LOGGER.info(f'Found {clean_url(url)} locally at {file}')  # file already exists
        else:
            downloads.safe_download(url=url, file=file, unzip=False)
        return file
    else:  # search
        files = []
        for d in 'models', 'datasets', 'tracker/cfg', 'yolo/cfg':  # search directories
            files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True))  # find file
        if not files and hard:
            raise FileNotFoundError(f"'{file}' does not exist")
        elif len(files) > 1 and hard:
            raise FileNotFoundError(f"Multiple files match '{file}', specify exact path: {files}")
        return files[0] if len(files) else []  # return file


def check_yaml(file, suffix=('.yaml', '.yml'), hard=True):
    """Search/download YAML file (if necessary) and return path, checking suffix."""
    return check_file(file, suffix, hard=hard)


def check_imshow(warn=False):
    """Check if environment supports image displays."""
    try:
        assert not any((is_colab(), is_kaggle(), is_docker()))
        cv2.imshow('test', np.zeros((1, 1, 3)))
        cv2.waitKey(1)
        cv2.destroyAllWindows()
        cv2.waitKey(1)
        return True
    except Exception as e:
        if warn:
            LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}')
        return False


def check_yolo(verbose=True, device=''):
    """Return a human-readable YOLO software and hardware summary."""
    from ultralytics.yolo.utils.torch_utils import select_device

    if is_jupyter():
        if check_requirements('wandb', install=False):
            os.system('pip uninstall -y wandb')  # uninstall wandb: unwanted account creation prompt with infinite hang
        if is_colab():
            shutil.rmtree('sample_data', ignore_errors=True)  # remove colab /sample_data directory

    if verbose:
        # System info
        gib = 1 << 30  # bytes per GiB
        ram = psutil.virtual_memory().total
        total, used, free = shutil.disk_usage('/')
        s = f'({os.cpu_count()} CPUs, {ram / gib:.1f} GB RAM, {(total - free) / gib:.1f}/{total / gib:.1f} GB disk)'
        with contextlib.suppress(Exception):  # clear display if ipython is installed
            from IPython import display
            display.clear_output()
    else:
        s = ''

    select_device(device=device, newline=False)
    LOGGER.info(f'Setup complete ✅ {s}')


def check_amp(model):
    """
    This function checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLOv8 model.
    If the checks fail, it means there are anomalies with AMP on the system that may cause NaN losses or zero-mAP
    results, so AMP will be disabled during training.

    Args:
        model (nn.Module): A YOLOv8 model instance.

    Returns:
        (bool): Returns True if the AMP functionality works correctly with YOLOv8 model, else False.

    Raises:
        AssertionError: If the AMP checks fail, indicating anomalies with the AMP functionality on the system.
    """
    device = next(model.parameters()).device  # get model device
    if device.type in ('cpu', 'mps'):
        return False  # AMP only used on CUDA devices

    def amp_allclose(m, im):
        """All close FP32 vs AMP results."""
        a = m(im, device=device, verbose=False)[0].boxes.data  # FP32 inference
        with torch.cuda.amp.autocast(True):
            b = m(im, device=device, verbose=False)[0].boxes.data  # AMP inference
        del m
        return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5)  # close to 0.5 absolute tolerance

    f = ROOT / 'assets/bus.jpg'  # image to check
    im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if ONLINE else np.ones((640, 640, 3))
    prefix = colorstr('AMP: ')
    LOGGER.info(f'{prefix}running Automatic Mixed Precision (AMP) checks with YOLOv8n...')
    warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False."
    try:
        from ultralytics import YOLO
        assert amp_allclose(YOLO('yolov8n.pt'), im)
        LOGGER.info(f'{prefix}checks passed ✅')
    except ConnectionError:
        LOGGER.warning(f'{prefix}checks skipped ⚠️, offline and unable to download YOLOv8n. {warning_msg}')
    except (AttributeError, ModuleNotFoundError):
        LOGGER.warning(
            f'{prefix}checks skipped ⚠️. Unable to load YOLOv8n due to possible Ultralytics package modifications. {warning_msg}'
        )
    except AssertionError:
        LOGGER.warning(f'{prefix}checks failed ❌. Anomalies were detected with AMP on your system that may lead to '
                       f'NaN losses or zero-mAP results, so AMP will be disabled during training.')
        return False
    return True


def git_describe(path=ROOT):  # path must be a directory
    # Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
    try:
        assert (Path(path) / '.git').is_dir()
        return subprocess.check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
    except AssertionError:
        return ''


def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
    """Print function arguments (optional args dict)."""

    def strip_auth(v):
        """Clean longer Ultralytics HUB URLs by stripping potential authentication information."""
        return clean_url(v) if (isinstance(v, str) and v.startswith('http') and len(v) > 100) else v

    x = inspect.currentframe().f_back  # previous frame
    file, _, func, _, _ = inspect.getframeinfo(x)
    if args is None:  # get args automatically
        args, _, _, frm = inspect.getargvalues(x)
        args = {k: v for k, v in frm.items() if k in args}
    try:
        file = Path(file).resolve().relative_to(ROOT).with_suffix('')
    except ValueError:
        file = Path(file).stem
    s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
    LOGGER.info(colorstr(s) + ', '.join(f'{k}={strip_auth(v)}' for k, v in args.items()))