File size: 19,159 Bytes
e5dd705
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Ultralytics YOLO 🚀, AGPL-3.0 license

import torch
import torch.nn as nn
import torch.nn.functional as F

from ultralytics.yolo.utils.metrics import OKS_SIGMA
from ultralytics.yolo.utils.ops import crop_mask, xywh2xyxy, xyxy2xywh
from ultralytics.yolo.utils.tal import TaskAlignedAssigner, dist2bbox, make_anchors

from .metrics import bbox_iou
from .tal import bbox2dist


class VarifocalLoss(nn.Module):
    """Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367."""

    def __init__(self):
        """Initialize the VarifocalLoss class."""
        super().__init__()

    def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
        """Computes varfocal loss."""
        weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
        with torch.cuda.amp.autocast(enabled=False):
            loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(), reduction='none') *
                    weight).mean(1).sum()
        return loss


# Losses
class FocalLoss(nn.Module):
    """Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)."""

    def __init__(self, ):
        super().__init__()

    def forward(self, pred, label, gamma=1.5, alpha=0.25):
        """Calculates and updates confusion matrix for object detection/classification tasks."""
        loss = F.binary_cross_entropy_with_logits(pred, label, reduction='none')
        # p_t = torch.exp(-loss)
        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability

        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
        pred_prob = pred.sigmoid()  # prob from logits
        p_t = label * pred_prob + (1 - label) * (1 - pred_prob)
        modulating_factor = (1.0 - p_t) ** gamma
        loss *= modulating_factor
        if alpha > 0:
            alpha_factor = label * alpha + (1 - label) * (1 - alpha)
            loss *= alpha_factor
        return loss.mean(1).sum()


class BboxLoss(nn.Module):

    def __init__(self, reg_max, use_dfl=False):
        """Initialize the BboxLoss module with regularization maximum and DFL settings."""
        super().__init__()
        self.reg_max = reg_max
        self.use_dfl = use_dfl

    def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
        """IoU loss."""
        weight = target_scores.sum(-1)[fg_mask].unsqueeze(-1)
        iou = bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywh=False, CIoU=True)
        loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

        # DFL loss
        if self.use_dfl:
            target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
            loss_dfl = self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max + 1), target_ltrb[fg_mask]) * weight
            loss_dfl = loss_dfl.sum() / target_scores_sum
        else:
            loss_dfl = torch.tensor(0.0).to(pred_dist.device)

        return loss_iou, loss_dfl

    @staticmethod
    def _df_loss(pred_dist, target):
        """Return sum of left and right DFL losses."""
        # Distribution Focal Loss (DFL) proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
        tl = target.long()  # target left
        tr = tl + 1  # target right
        wl = tr - target  # weight left
        wr = 1 - wl  # weight right
        return (F.cross_entropy(pred_dist, tl.view(-1), reduction='none').view(tl.shape) * wl +
                F.cross_entropy(pred_dist, tr.view(-1), reduction='none').view(tl.shape) * wr).mean(-1, keepdim=True)


class KeypointLoss(nn.Module):

    def __init__(self, sigmas) -> None:
        super().__init__()
        self.sigmas = sigmas

    def forward(self, pred_kpts, gt_kpts, kpt_mask, area):
        """Calculates keypoint loss factor and Euclidean distance loss for predicted and actual keypoints."""
        d = (pred_kpts[..., 0] - gt_kpts[..., 0]) ** 2 + (pred_kpts[..., 1] - gt_kpts[..., 1]) ** 2
        kpt_loss_factor = (torch.sum(kpt_mask != 0) + torch.sum(kpt_mask == 0)) / (torch.sum(kpt_mask != 0) + 1e-9)
        # e = d / (2 * (area * self.sigmas) ** 2 + 1e-9)  # from formula
        e = d / (2 * self.sigmas) ** 2 / (area + 1e-9) / 2  # from cocoeval
        return kpt_loss_factor * ((1 - torch.exp(-e)) * kpt_mask).mean()


# Criterion class for computing Detection training losses
class v8DetectionLoss:

    def __init__(self, model):  # model must be de-paralleled

        device = next(model.parameters()).device  # get model device
        h = model.args  # hyperparameters

        m = model.model[-1]  # Detect() module
        self.bce = nn.BCEWithLogitsLoss(reduction='none')
        self.hyp = h
        self.stride = m.stride  # model strides
        self.nc = m.nc  # number of classes
        self.no = m.no
        self.reg_max = m.reg_max
        self.device = device

        self.use_dfl = m.reg_max > 1

        self.assigner = TaskAlignedAssigner(topk=10, num_classes=self.nc, alpha=0.5, beta=6.0)
        self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=self.use_dfl).to(device)
        self.proj = torch.arange(m.reg_max, dtype=torch.float, device=device)

    def preprocess(self, targets, batch_size, scale_tensor):
        """Preprocesses the target counts and matches with the input batch size to output a tensor."""
        if targets.shape[0] == 0:
            out = torch.zeros(batch_size, 0, 5, device=self.device)
        else:
            i = targets[:, 0]  # image index
            _, counts = i.unique(return_counts=True)
            counts = counts.to(dtype=torch.int32)
            out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
            for j in range(batch_size):
                matches = i == j
                n = matches.sum()
                if n:
                    out[j, :n] = targets[matches, 1:]
            out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
        return out

    def bbox_decode(self, anchor_points, pred_dist):
        """Decode predicted object bounding box coordinates from anchor points and distribution."""
        if self.use_dfl:
            b, a, c = pred_dist.shape  # batch, anchors, channels
            pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
            # pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
        return dist2bbox(pred_dist, anchor_points, xywh=False)

    def __call__(self, preds, batch):
        """Calculate the sum of the loss for box, cls and dfl multiplied by batch size."""
        loss = torch.zeros(3, device=self.device)  # box, cls, dfl
        feats = preds[1] if isinstance(preds, tuple) else preds
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1)

        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        batch_size = pred_scores.shape[0]
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        targets = torch.cat((batch['batch_idx'].view(-1, 1), batch['cls'].view(-1, 1), batch['bboxes']), 1)
        targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
        gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
        mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)

        # pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)

        _, target_bboxes, target_scores, fg_mask, _ = self.assigner(
            pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)

        target_scores_sum = max(target_scores.sum(), 1)

        # cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[1] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # bbox loss
        if fg_mask.sum():
            target_bboxes /= stride_tensor
            loss[0], loss[2] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
                                              target_scores_sum, fg_mask)

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.cls  # cls gain
        loss[2] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)


# Criterion class for computing training losses
class v8SegmentationLoss(v8DetectionLoss):

    def __init__(self, model):  # model must be de-paralleled
        super().__init__(model)
        self.nm = model.model[-1].nm  # number of masks
        self.overlap = model.args.overlap_mask

    def __call__(self, preds, batch):
        """Calculate and return the loss for the YOLO model."""
        loss = torch.zeros(4, device=self.device)  # box, cls, dfl
        feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
        batch_size, _, mask_h, mask_w = proto.shape  # batch size, number of masks, mask height, mask width
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1)

        # b, grids, ..
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_masks = pred_masks.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        try:
            batch_idx = batch['batch_idx'].view(-1, 1)
            targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
            targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
            gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
            mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
        except RuntimeError as e:
            raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n'
                            "This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
                            "i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a "
                            "correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' "
                            'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e

        # pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)

        _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
            pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)

        target_scores_sum = max(target_scores.sum(), 1)

        # cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        if fg_mask.sum():
            # bbox loss
            loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor,
                                              target_scores, target_scores_sum, fg_mask)
            # masks loss
            masks = batch['masks'].to(self.device).float()
            if tuple(masks.shape[-2:]) != (mask_h, mask_w):  # downsample
                masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]

            for i in range(batch_size):
                if fg_mask[i].sum():
                    mask_idx = target_gt_idx[i][fg_mask[i]]
                    if self.overlap:
                        gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
                    else:
                        gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
                    xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
                    marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
                    mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
                    loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy, marea)  # seg

                # WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
                else:
                    loss[1] += (proto * 0).sum() + (pred_masks * 0).sum()  # inf sums may lead to nan loss

        # WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
        else:
            loss[1] += (proto * 0).sum() + (pred_masks * 0).sum()  # inf sums may lead to nan loss

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.box / batch_size  # seg gain
        loss[2] *= self.hyp.cls  # cls gain
        loss[3] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
        """Mask loss for one image."""
        pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:])  # (n, 32) @ (32,80,80) -> (n,80,80)
        loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
        return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()


# Criterion class for computing training losses
class v8PoseLoss(v8DetectionLoss):

    def __init__(self, model):  # model must be de-paralleled
        super().__init__(model)
        self.kpt_shape = model.model[-1].kpt_shape
        self.bce_pose = nn.BCEWithLogitsLoss()
        is_pose = self.kpt_shape == [17, 3]
        nkpt = self.kpt_shape[0]  # number of keypoints
        sigmas = torch.from_numpy(OKS_SIGMA).to(self.device) if is_pose else torch.ones(nkpt, device=self.device) / nkpt
        self.keypoint_loss = KeypointLoss(sigmas=sigmas)

    def __call__(self, preds, batch):
        """Calculate the total loss and detach it."""
        loss = torch.zeros(5, device=self.device)  # box, cls, dfl, kpt_location, kpt_visibility
        feats, pred_kpts = preds if isinstance(preds[0], list) else preds[1]
        pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
            (self.reg_max * 4, self.nc), 1)

        # b, grids, ..
        pred_scores = pred_scores.permute(0, 2, 1).contiguous()
        pred_distri = pred_distri.permute(0, 2, 1).contiguous()
        pred_kpts = pred_kpts.permute(0, 2, 1).contiguous()

        dtype = pred_scores.dtype
        imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0]  # image size (h,w)
        anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)

        # targets
        batch_size = pred_scores.shape[0]
        batch_idx = batch['batch_idx'].view(-1, 1)
        targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
        targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
        gt_labels, gt_bboxes = targets.split((1, 4), 2)  # cls, xyxy
        mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)

        # pboxes
        pred_bboxes = self.bbox_decode(anchor_points, pred_distri)  # xyxy, (b, h*w, 4)
        pred_kpts = self.kpts_decode(anchor_points, pred_kpts.view(batch_size, -1, *self.kpt_shape))  # (b, h*w, 17, 3)

        _, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
            pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
            anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)

        target_scores_sum = max(target_scores.sum(), 1)

        # cls loss
        # loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum  # VFL way
        loss[3] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum  # BCE

        # bbox loss
        if fg_mask.sum():
            target_bboxes /= stride_tensor
            loss[0], loss[4] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores,
                                              target_scores_sum, fg_mask)
            keypoints = batch['keypoints'].to(self.device).float().clone()
            keypoints[..., 0] *= imgsz[1]
            keypoints[..., 1] *= imgsz[0]
            for i in range(batch_size):
                if fg_mask[i].sum():
                    idx = target_gt_idx[i][fg_mask[i]]
                    gt_kpt = keypoints[batch_idx.view(-1) == i][idx]  # (n, 51)
                    gt_kpt[..., 0] /= stride_tensor[fg_mask[i]]
                    gt_kpt[..., 1] /= stride_tensor[fg_mask[i]]
                    area = xyxy2xywh(target_bboxes[i][fg_mask[i]])[:, 2:].prod(1, keepdim=True)
                    pred_kpt = pred_kpts[i][fg_mask[i]]
                    kpt_mask = gt_kpt[..., 2] != 0
                    loss[1] += self.keypoint_loss(pred_kpt, gt_kpt, kpt_mask, area)  # pose loss
                    # kpt_score loss
                    if pred_kpt.shape[-1] == 3:
                        loss[2] += self.bce_pose(pred_kpt[..., 2], kpt_mask.float())  # keypoint obj loss

        loss[0] *= self.hyp.box  # box gain
        loss[1] *= self.hyp.pose / batch_size  # pose gain
        loss[2] *= self.hyp.kobj / batch_size  # kobj gain
        loss[3] *= self.hyp.cls  # cls gain
        loss[4] *= self.hyp.dfl  # dfl gain

        return loss.sum() * batch_size, loss.detach()  # loss(box, cls, dfl)

    def kpts_decode(self, anchor_points, pred_kpts):
        """Decodes predicted keypoints to image coordinates."""
        y = pred_kpts.clone()
        y[..., :2] *= 2.0
        y[..., 0] += anchor_points[:, [0]] - 0.5
        y[..., 1] += anchor_points[:, [1]] - 0.5
        return y


class v8ClassificationLoss:

    def __call__(self, preds, batch):
        """Compute the classification loss between predictions and true labels."""
        loss = torch.nn.functional.cross_entropy(preds, batch['cls'], reduction='sum') / 64
        loss_items = loss.detach()
        return loss, loss_items