Spaces:
Running
on
T4
Running
on
T4
from ultralytics import YOLO | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
import torch | |
model = YOLO('checkpoints/FastSAM.pt') # load a custom model | |
def format_results(result,filter = 0): | |
annotations = [] | |
n = len(result.masks.data) | |
for i in range(n): | |
annotation = {} | |
mask = result.masks.data[i] == 1.0 | |
if torch.sum(mask) < filter: | |
continue | |
annotation['id'] = i | |
annotation['segmentation'] = mask.cpu().numpy() | |
annotation['bbox'] = result.boxes.data[i] | |
annotation['score'] = result.boxes.conf[i] | |
annotation['area'] = annotation['segmentation'].sum() | |
annotations.append(annotation) | |
return annotations | |
def show_mask(annotation, ax, random_color=True, bbox=None, points=None): | |
if random_color : # random mask color | |
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
else: | |
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) | |
if type(annotation) == dict: | |
annotation = annotation['segmentation'] | |
mask = annotation | |
h, w = mask.shape[-2:] | |
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
# draw box | |
if bbox is not None: | |
x1, y1, x2, y2 = bbox | |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) | |
# draw point | |
if points is not None: | |
ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g') | |
ax.imshow(mask_image) | |
return mask_image | |
def post_process(annotations, image, mask_random_color=True, bbox=None, points=None): | |
fig = plt.figure(figsize=(10, 10)) | |
plt.imshow(image) | |
for i, mask in enumerate(annotations): | |
show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points) | |
plt.axis('off') | |
# # create a BytesIO object | |
# buf = io.BytesIO() | |
# # save plot to buf | |
# plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0.0) | |
# # use PIL to open the image | |
# img = Image.open(buf) | |
# # copy the image data | |
# img_copy = img.copy() | |
plt.tight_layout() | |
# # don't forget to close the buffer | |
# buf.close() | |
return fig | |
# def show_mask(annotation, ax, random_color=False): | |
# if random_color : # 掩膜颜色是否随机决定 | |
# color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) | |
# else: | |
# color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) | |
# mask = annotation.cpu().numpy() | |
# h, w = mask.shape[-2:] | |
# mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
# ax.imshow(mask_image) | |
# def post_process(annotations, image): | |
# plt.figure(figsize=(10, 10)) | |
# plt.imshow(image) | |
# for i, mask in enumerate(annotations): | |
# show_mask(mask.data, plt.gca(),random_color=True) | |
# plt.axis('off') | |
# 获取渲染后的像素数据并转换为PIL图像 | |
return pil_image | |
# post_process(results[0].masks, Image.open("../data/cake.png")) | |
def predict(inp): | |
results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024) | |
results = format_results(results[0], 100) | |
pil_image = post_process(annotations=results, image=inp) | |
return pil_image | |
# inp = 'assets/sa_192.jpg' | |
# results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024) | |
# results = format_results(results[0], 100) | |
# post_process(annotations=results, image_path=inp) | |
demo = gr.Interface(fn=predict, | |
inputs=gr.inputs.Image(type='pil'), | |
outputs=['plot'], | |
examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"], | |
["assets/sa_561.jpg"], ["assets/sa_862.jpg"], | |
["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"], | |
["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],], | |
) | |
demo.launch() |