FastSAM / app.py
AAAAAAyq
Update application file
30e0f74
raw
history blame
3.99 kB
from ultralytics import YOLO
import numpy as np
import matplotlib.pyplot as plt
import gradio as gr
import torch
model = YOLO('checkpoints/FastSAM.pt') # load a custom model
def format_results(result,filter = 0):
annotations = []
n = len(result.masks.data)
for i in range(n):
annotation = {}
mask = result.masks.data[i] == 1.0
if torch.sum(mask) < filter:
continue
annotation['id'] = i
annotation['segmentation'] = mask.cpu().numpy()
annotation['bbox'] = result.boxes.data[i]
annotation['score'] = result.boxes.conf[i]
annotation['area'] = annotation['segmentation'].sum()
annotations.append(annotation)
return annotations
def show_mask(annotation, ax, random_color=True, bbox=None, points=None):
if random_color : # random mask color
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
if type(annotation) == dict:
annotation = annotation['segmentation']
mask = annotation
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
# draw box
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
# draw point
if points is not None:
ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g')
ax.imshow(mask_image)
return mask_image
def post_process(annotations, image, mask_random_color=True, bbox=None, points=None):
fig = plt.figure(figsize=(10, 10))
plt.imshow(image)
for i, mask in enumerate(annotations):
show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points)
plt.axis('off')
# # create a BytesIO object
# buf = io.BytesIO()
# # save plot to buf
# plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0.0)
# # use PIL to open the image
# img = Image.open(buf)
# # copy the image data
# img_copy = img.copy()
plt.tight_layout()
# # don't forget to close the buffer
# buf.close()
return fig
# def show_mask(annotation, ax, random_color=False):
# if random_color : # 掩膜颜色是否随机决定
# color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
# else:
# color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
# mask = annotation.cpu().numpy()
# h, w = mask.shape[-2:]
# mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
# ax.imshow(mask_image)
# def post_process(annotations, image):
# plt.figure(figsize=(10, 10))
# plt.imshow(image)
# for i, mask in enumerate(annotations):
# show_mask(mask.data, plt.gca(),random_color=True)
# plt.axis('off')
# 获取渲染后的像素数据并转换为PIL图像
return pil_image
# post_process(results[0].masks, Image.open("../data/cake.png"))
def predict(inp):
results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024)
results = format_results(results[0], 100)
pil_image = post_process(annotations=results, image=inp)
return pil_image
# inp = 'assets/sa_192.jpg'
# results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024)
# results = format_results(results[0], 100)
# post_process(annotations=results, image_path=inp)
demo = gr.Interface(fn=predict,
inputs=gr.inputs.Image(type='pil'),
outputs=['plot'],
examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
)
demo.launch()