Spaces:
Running
on
T4
Running
on
T4
from ultralytics import YOLO | |
import gradio as gr | |
import torch | |
from tools import fast_process | |
# Load the pre-trained model | |
model = YOLO('checkpoints/FastSAM.pt') | |
# Description | |
title = "<center><strong><font size='8'>๐ Fast Segment Anything ๐ค</font></strong></center>" | |
news = """ # News | |
๐ฅ Add the 'Advanced options" in Everything mode to get a more detailed adjustment. | |
# ๐ฅ Support the points mode and box mode, text mode will come soon. | |
""" | |
description = """This is a demo on Github project ๐ [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM). | |
๐ฏ Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon. | |
โ๏ธ It takes about 4~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded. | |
๐ To get faster results, you can use a smaller input size and leave high_visual_quality unchecked. | |
๐ฃ You can also obtain the segmentation results of any Image through this Colab: [](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing) | |
๐ A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant. | |
๐ Check out our [Model Card ๐](https://huggingface.co/An-619/FastSAM) | |
""" | |
examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"], ["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"], | |
["assets/sa_561.jpg"], ["assets/sa_192.jpg"], ["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]] | |
default_example = examples[0] | |
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }" | |
def segment_image( | |
input, | |
input_size=1024, | |
iou_threshold=0.7, | |
conf_threshold=0.25, | |
better_quality=False, | |
mask_random_color=True, | |
withContours=True, | |
points=None, | |
bbox=None, | |
point_label=None, | |
use_retina=True, | |
): | |
input_size = int(input_size) # ็กฎไฟ imgsz ๆฏๆดๆฐ | |
# Thanks for the suggestion by hysts in HuggingFace. | |
w, h = input.size | |
scale = input_size / max(w, h) | |
new_w = int(w * scale) | |
new_h = int(h * scale) | |
input = input.resize((new_w, new_h)) | |
results = model(input, | |
device=device, | |
retina_masks=True, | |
iou=iou_threshold, | |
conf=conf_threshold, | |
imgsz=input_size,) | |
fig = fast_process(annotations=results[0].masks.data, | |
image=input, | |
device=device, | |
scale=(1024 // input_size), | |
better_quality=better_quality, | |
mask_random_color=mask_random_color, | |
points=points, | |
bbox=bbox, | |
point_label=point_label, | |
use_retina=use_retina, | |
withContours=withContours,) | |
return fig | |
# input_size=1024 | |
# high_quality_visual=True | |
# inp = 'assets/sa_192.jpg' | |
# input = Image.open(inp) | |
# device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# input_size = int(input_size) # ็กฎไฟ imgsz ๆฏๆดๆฐ | |
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size) | |
# pil_image = fast_process(annotations=results[0].masks.data, | |
# image=input, high_quality=high_quality_visual, device=device) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
cond_img = gr.Image(label="Input", value=default_example[0], type='pil') | |
segm_img = gr.Image(label="Segmented Image", interactive=False, type='pil') | |
input_size_slider = gr.components.Slider(minimum=512, | |
maximum=1024, | |
value=1024, | |
step=64, | |
label='Input_size (Our model was trained on a size of 1024)') | |
with gr.Blocks(css=css, title='Fast Segment Anything') as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
# Title | |
gr.Markdown(title) | |
with gr.Column(scale=1): | |
# News | |
gr.Markdown(news) | |
# Images | |
with gr.Row(variant="panel"): | |
with gr.Column(scale=1): | |
cond_img.render() | |
with gr.Column(scale=1): | |
segm_img.render() | |
# Submit & Clear | |
with gr.Row(): | |
with gr.Column(): | |
input_size_slider.render() | |
with gr.Row(): | |
contour_check = gr.Checkbox(value=True, label='withContours') | |
with gr.Column(): | |
segment_btn = gr.Button("Segment Anything", variant='primary') | |
# with gr.Column(): | |
# clear_btn = gr.Button("Clear", variant="primary") | |
gr.Markdown("Try some of the examples below โฌ๏ธ") | |
gr.Examples(examples=examples, | |
inputs=[cond_img], | |
outputs=segm_img, | |
fn=segment_image, | |
cache_examples=True, | |
examples_per_page=4) | |
with gr.Column(): | |
with gr.Accordion("Advanced options", open=False): | |
iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou_threshold') | |
conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf_threshold') | |
mor_check = gr.Checkbox(value=False, label='better_visual_quality') | |
# Description | |
gr.Markdown(description) | |
segment_btn.click(segment_image, | |
inputs=[cond_img, input_size_slider, iou_threshold, conf_threshold, mor_check, contour_check], | |
outputs=segm_img) | |
# def clear(): | |
# return None, None | |
# clear_btn.click(fn=clear, inputs=None, outputs=None) | |
demo.queue() | |
demo.launch() | |