Spaces:
Running
on
T4
Running
on
T4
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import ast | |
import contextlib | |
import json | |
import platform | |
import zipfile | |
from collections import OrderedDict, namedtuple | |
from pathlib import Path | |
from urllib.parse import urlparse | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from PIL import Image | |
from ultralytics.yolo.utils import LINUX, LOGGER, ROOT, yaml_load | |
from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_version, check_yaml | |
from ultralytics.yolo.utils.downloads import attempt_download_asset, is_url | |
from ultralytics.yolo.utils.ops import xywh2xyxy | |
def check_class_names(names): | |
"""Check class names. Map imagenet class codes to human-readable names if required. Convert lists to dicts.""" | |
if isinstance(names, list): # names is a list | |
names = dict(enumerate(names)) # convert to dict | |
if isinstance(names, dict): | |
# Convert 1) string keys to int, i.e. '0' to 0, and non-string values to strings, i.e. True to 'True' | |
names = {int(k): str(v) for k, v in names.items()} | |
n = len(names) | |
if max(names.keys()) >= n: | |
raise KeyError(f'{n}-class dataset requires class indices 0-{n - 1}, but you have invalid class indices ' | |
f'{min(names.keys())}-{max(names.keys())} defined in your dataset YAML.') | |
if isinstance(names[0], str) and names[0].startswith('n0'): # imagenet class codes, i.e. 'n01440764' | |
map = yaml_load(ROOT / 'datasets/ImageNet.yaml')['map'] # human-readable names | |
names = {k: map[v] for k, v in names.items()} | |
return names | |
class AutoBackend(nn.Module): | |
def __init__(self, | |
weights='yolov8n.pt', | |
device=torch.device('cpu'), | |
dnn=False, | |
data=None, | |
fp16=False, | |
fuse=True, | |
verbose=True): | |
""" | |
MultiBackend class for python inference on various platforms using Ultralytics YOLO. | |
Args: | |
weights (str): The path to the weights file. Default: 'yolov8n.pt' | |
device (torch.device): The device to run the model on. | |
dnn (bool): Use OpenCV DNN module for inference if True, defaults to False. | |
data (str | Path | optional): Additional data.yaml file for class names. | |
fp16 (bool): If True, use half precision. Default: False | |
fuse (bool): Whether to fuse the model or not. Default: True | |
verbose (bool): Whether to run in verbose mode or not. Default: True | |
Supported formats and their naming conventions: | |
| Format | Suffix | | |
|-----------------------|------------------| | |
| PyTorch | *.pt | | |
| TorchScript | *.torchscript | | |
| ONNX Runtime | *.onnx | | |
| ONNX OpenCV DNN | *.onnx dnn=True | | |
| OpenVINO | *.xml | | |
| CoreML | *.mlmodel | | |
| TensorRT | *.engine | | |
| TensorFlow SavedModel | *_saved_model | | |
| TensorFlow GraphDef | *.pb | | |
| TensorFlow Lite | *.tflite | | |
| TensorFlow Edge TPU | *_edgetpu.tflite | | |
| PaddlePaddle | *_paddle_model | | |
""" | |
super().__init__() | |
w = str(weights[0] if isinstance(weights, list) else weights) | |
nn_module = isinstance(weights, torch.nn.Module) | |
pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w) | |
fp16 &= pt or jit or onnx or engine or nn_module or triton # FP16 | |
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH) | |
stride = 32 # default stride | |
model, metadata = None, None | |
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA | |
if not (pt or triton or nn_module): | |
w = attempt_download_asset(w) # download if not local | |
# NOTE: special case: in-memory pytorch model | |
if nn_module: | |
model = weights.to(device) | |
model = model.fuse(verbose=verbose) if fuse else model | |
if hasattr(model, 'kpt_shape'): | |
kpt_shape = model.kpt_shape # pose-only | |
stride = max(int(model.stride.max()), 32) # model stride | |
names = model.module.names if hasattr(model, 'module') else model.names # get class names | |
model.half() if fp16 else model.float() | |
self.model = model # explicitly assign for to(), cpu(), cuda(), half() | |
pt = True | |
elif pt: # PyTorch | |
from ultralytics.nn.tasks import attempt_load_weights | |
model = attempt_load_weights(weights if isinstance(weights, list) else w, | |
device=device, | |
inplace=True, | |
fuse=fuse) | |
if hasattr(model, 'kpt_shape'): | |
kpt_shape = model.kpt_shape # pose-only | |
stride = max(int(model.stride.max()), 32) # model stride | |
names = model.module.names if hasattr(model, 'module') else model.names # get class names | |
model.half() if fp16 else model.float() | |
self.model = model # explicitly assign for to(), cpu(), cuda(), half() | |
elif jit: # TorchScript | |
LOGGER.info(f'Loading {w} for TorchScript inference...') | |
extra_files = {'config.txt': ''} # model metadata | |
model = torch.jit.load(w, _extra_files=extra_files, map_location=device) | |
model.half() if fp16 else model.float() | |
if extra_files['config.txt']: # load metadata dict | |
metadata = json.loads(extra_files['config.txt'], object_hook=lambda x: dict(x.items())) | |
elif dnn: # ONNX OpenCV DNN | |
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...') | |
check_requirements('opencv-python>=4.5.4') | |
net = cv2.dnn.readNetFromONNX(w) | |
elif onnx: # ONNX Runtime | |
LOGGER.info(f'Loading {w} for ONNX Runtime inference...') | |
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime')) | |
import onnxruntime | |
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider'] | |
session = onnxruntime.InferenceSession(w, providers=providers) | |
output_names = [x.name for x in session.get_outputs()] | |
metadata = session.get_modelmeta().custom_metadata_map # metadata | |
elif xml: # OpenVINO | |
LOGGER.info(f'Loading {w} for OpenVINO inference...') | |
check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/ | |
from openvino.runtime import Core, Layout, get_batch # noqa | |
ie = Core() | |
w = Path(w) | |
if not w.is_file(): # if not *.xml | |
w = next(w.glob('*.xml')) # get *.xml file from *_openvino_model dir | |
network = ie.read_model(model=str(w), weights=w.with_suffix('.bin')) | |
if network.get_parameters()[0].get_layout().empty: | |
network.get_parameters()[0].set_layout(Layout('NCHW')) | |
batch_dim = get_batch(network) | |
if batch_dim.is_static: | |
batch_size = batch_dim.get_length() | |
executable_network = ie.compile_model(network, device_name='CPU') # device_name="MYRIAD" for NCS2 | |
metadata = w.parent / 'metadata.yaml' | |
elif engine: # TensorRT | |
LOGGER.info(f'Loading {w} for TensorRT inference...') | |
try: | |
import tensorrt as trt # noqa https://developer.nvidia.com/nvidia-tensorrt-download | |
except ImportError: | |
if LINUX: | |
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com') | |
import tensorrt as trt # noqa | |
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0 | |
if device.type == 'cpu': | |
device = torch.device('cuda:0') | |
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) | |
logger = trt.Logger(trt.Logger.INFO) | |
# Read file | |
with open(w, 'rb') as f, trt.Runtime(logger) as runtime: | |
meta_len = int.from_bytes(f.read(4), byteorder='little') # read metadata length | |
metadata = json.loads(f.read(meta_len).decode('utf-8')) # read metadata | |
model = runtime.deserialize_cuda_engine(f.read()) # read engine | |
context = model.create_execution_context() | |
bindings = OrderedDict() | |
output_names = [] | |
fp16 = False # default updated below | |
dynamic = False | |
for i in range(model.num_bindings): | |
name = model.get_binding_name(i) | |
dtype = trt.nptype(model.get_binding_dtype(i)) | |
if model.binding_is_input(i): | |
if -1 in tuple(model.get_binding_shape(i)): # dynamic | |
dynamic = True | |
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2])) | |
if dtype == np.float16: | |
fp16 = True | |
else: # output | |
output_names.append(name) | |
shape = tuple(context.get_binding_shape(i)) | |
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device) | |
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr())) | |
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items()) | |
batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size | |
elif coreml: # CoreML | |
LOGGER.info(f'Loading {w} for CoreML inference...') | |
import coremltools as ct | |
model = ct.models.MLModel(w) | |
metadata = dict(model.user_defined_metadata) | |
elif saved_model: # TF SavedModel | |
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...') | |
import tensorflow as tf | |
keras = False # assume TF1 saved_model | |
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w) | |
metadata = Path(w) / 'metadata.yaml' | |
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt | |
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...') | |
import tensorflow as tf | |
from ultralytics.yolo.engine.exporter import gd_outputs | |
def wrap_frozen_graph(gd, inputs, outputs): | |
"""Wrap frozen graphs for deployment.""" | |
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=''), []) # wrapped | |
ge = x.graph.as_graph_element | |
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs)) | |
gd = tf.Graph().as_graph_def() # TF GraphDef | |
with open(w, 'rb') as f: | |
gd.ParseFromString(f.read()) | |
frozen_func = wrap_frozen_graph(gd, inputs='x:0', outputs=gd_outputs(gd)) | |
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python | |
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu | |
from tflite_runtime.interpreter import Interpreter, load_delegate | |
except ImportError: | |
import tensorflow as tf | |
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate | |
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime | |
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...') | |
delegate = { | |
'Linux': 'libedgetpu.so.1', | |
'Darwin': 'libedgetpu.1.dylib', | |
'Windows': 'edgetpu.dll'}[platform.system()] | |
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)]) | |
else: # TFLite | |
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...') | |
interpreter = Interpreter(model_path=w) # load TFLite model | |
interpreter.allocate_tensors() # allocate | |
input_details = interpreter.get_input_details() # inputs | |
output_details = interpreter.get_output_details() # outputs | |
# Load metadata | |
with contextlib.suppress(zipfile.BadZipFile): | |
with zipfile.ZipFile(w, 'r') as model: | |
meta_file = model.namelist()[0] | |
metadata = ast.literal_eval(model.read(meta_file).decode('utf-8')) | |
elif tfjs: # TF.js | |
raise NotImplementedError('YOLOv8 TF.js inference is not supported') | |
elif paddle: # PaddlePaddle | |
LOGGER.info(f'Loading {w} for PaddlePaddle inference...') | |
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle') | |
import paddle.inference as pdi # noqa | |
w = Path(w) | |
if not w.is_file(): # if not *.pdmodel | |
w = next(w.rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir | |
config = pdi.Config(str(w), str(w.with_suffix('.pdiparams'))) | |
if cuda: | |
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0) | |
predictor = pdi.create_predictor(config) | |
input_handle = predictor.get_input_handle(predictor.get_input_names()[0]) | |
output_names = predictor.get_output_names() | |
metadata = w.parents[1] / 'metadata.yaml' | |
elif triton: # NVIDIA Triton Inference Server | |
LOGGER.info('Triton Inference Server not supported...') | |
''' | |
TODO: | |
check_requirements('tritonclient[all]') | |
from utils.triton import TritonRemoteModel | |
model = TritonRemoteModel(url=w) | |
nhwc = model.runtime.startswith("tensorflow") | |
''' | |
else: | |
from ultralytics.yolo.engine.exporter import export_formats | |
raise TypeError(f"model='{w}' is not a supported model format. " | |
'See https://docs.ultralytics.com/modes/predict for help.' | |
f'\n\n{export_formats()}') | |
# Load external metadata YAML | |
if isinstance(metadata, (str, Path)) and Path(metadata).exists(): | |
metadata = yaml_load(metadata) | |
if metadata: | |
for k, v in metadata.items(): | |
if k in ('stride', 'batch'): | |
metadata[k] = int(v) | |
elif k in ('imgsz', 'names', 'kpt_shape') and isinstance(v, str): | |
metadata[k] = eval(v) | |
stride = metadata['stride'] | |
task = metadata['task'] | |
batch = metadata['batch'] | |
imgsz = metadata['imgsz'] | |
names = metadata['names'] | |
kpt_shape = metadata.get('kpt_shape') | |
elif not (pt or triton or nn_module): | |
LOGGER.warning(f"WARNING ⚠️ Metadata not found for 'model={weights}'") | |
# Check names | |
if 'names' not in locals(): # names missing | |
names = self._apply_default_class_names(data) | |
names = check_class_names(names) | |
self.__dict__.update(locals()) # assign all variables to self | |
def forward(self, im, augment=False, visualize=False): | |
""" | |
Runs inference on the YOLOv8 MultiBackend model. | |
Args: | |
im (torch.Tensor): The image tensor to perform inference on. | |
augment (bool): whether to perform data augmentation during inference, defaults to False | |
visualize (bool): whether to visualize the output predictions, defaults to False | |
Returns: | |
(tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True) | |
""" | |
b, ch, h, w = im.shape # batch, channel, height, width | |
if self.fp16 and im.dtype != torch.float16: | |
im = im.half() # to FP16 | |
if self.nhwc: | |
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3) | |
if self.pt or self.nn_module: # PyTorch | |
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im) | |
elif self.jit: # TorchScript | |
y = self.model(im) | |
elif self.dnn: # ONNX OpenCV DNN | |
im = im.cpu().numpy() # torch to numpy | |
self.net.setInput(im) | |
y = self.net.forward() | |
elif self.onnx: # ONNX Runtime | |
im = im.cpu().numpy() # torch to numpy | |
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im}) | |
elif self.xml: # OpenVINO | |
im = im.cpu().numpy() # FP32 | |
y = list(self.executable_network([im]).values()) | |
elif self.engine: # TensorRT | |
if self.dynamic and im.shape != self.bindings['images'].shape: | |
i = self.model.get_binding_index('images') | |
self.context.set_binding_shape(i, im.shape) # reshape if dynamic | |
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape) | |
for name in self.output_names: | |
i = self.model.get_binding_index(name) | |
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i))) | |
s = self.bindings['images'].shape | |
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}" | |
self.binding_addrs['images'] = int(im.data_ptr()) | |
self.context.execute_v2(list(self.binding_addrs.values())) | |
y = [self.bindings[x].data for x in sorted(self.output_names)] | |
elif self.coreml: # CoreML | |
im = im[0].cpu().numpy() | |
im_pil = Image.fromarray((im * 255).astype('uint8')) | |
# im = im.resize((192, 320), Image.ANTIALIAS) | |
y = self.model.predict({'image': im_pil}) # coordinates are xywh normalized | |
if 'confidence' in y: | |
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels | |
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float) | |
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1) | |
elif len(y) == 1: # classification model | |
y = list(y.values()) | |
elif len(y) == 2: # segmentation model | |
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto) | |
elif self.paddle: # PaddlePaddle | |
im = im.cpu().numpy().astype(np.float32) | |
self.input_handle.copy_from_cpu(im) | |
self.predictor.run() | |
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names] | |
elif self.triton: # NVIDIA Triton Inference Server | |
y = self.model(im) | |
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU) | |
im = im.cpu().numpy() | |
if self.saved_model: # SavedModel | |
y = self.model(im, training=False) if self.keras else self.model(im) | |
if not isinstance(y, list): | |
y = [y] | |
elif self.pb: # GraphDef | |
y = self.frozen_func(x=self.tf.constant(im)) | |
if len(y) == 2 and len(self.names) == 999: # segments and names not defined | |
ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes | |
nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400) | |
self.names = {i: f'class{i}' for i in range(nc)} | |
else: # Lite or Edge TPU | |
input = self.input_details[0] | |
int8 = input['dtype'] == np.int8 # is TFLite quantized int8 model | |
if int8: | |
scale, zero_point = input['quantization'] | |
im = (im / scale + zero_point).astype(np.int8) # de-scale | |
self.interpreter.set_tensor(input['index'], im) | |
self.interpreter.invoke() | |
y = [] | |
for output in self.output_details: | |
x = self.interpreter.get_tensor(output['index']) | |
if int8: | |
scale, zero_point = output['quantization'] | |
x = (x.astype(np.float32) - zero_point) * scale # re-scale | |
y.append(x) | |
# TF segment fixes: export is reversed vs ONNX export and protos are transposed | |
if len(y) == 2: # segment with (det, proto) output order reversed | |
if len(y[1].shape) != 4: | |
y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32) | |
y[1] = np.transpose(y[1], (0, 3, 1, 2)) # should be y = (1, 116, 8400), (1, 32, 160, 160) | |
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y] | |
# y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels | |
# for x in y: | |
# print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape) # debug shapes | |
if isinstance(y, (list, tuple)): | |
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y] | |
else: | |
return self.from_numpy(y) | |
def from_numpy(self, x): | |
""" | |
Convert a numpy array to a tensor. | |
Args: | |
x (np.ndarray): The array to be converted. | |
Returns: | |
(torch.Tensor): The converted tensor | |
""" | |
return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x | |
def warmup(self, imgsz=(1, 3, 640, 640)): | |
""" | |
Warm up the model by running one forward pass with a dummy input. | |
Args: | |
imgsz (tuple): The shape of the dummy input tensor in the format (batch_size, channels, height, width) | |
Returns: | |
(None): This method runs the forward pass and don't return any value | |
""" | |
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module | |
if any(warmup_types) and (self.device.type != 'cpu' or self.triton): | |
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input | |
for _ in range(2 if self.jit else 1): # | |
self.forward(im) # warmup | |
def _apply_default_class_names(data): | |
"""Applies default class names to an input YAML file or returns numerical class names.""" | |
with contextlib.suppress(Exception): | |
return yaml_load(check_yaml(data))['names'] | |
return {i: f'class{i}' for i in range(999)} # return default if above errors | |
def _model_type(p='path/to/model.pt'): | |
""" | |
This function takes a path to a model file and returns the model type | |
Args: | |
p: path to the model file. Defaults to path/to/model.pt | |
""" | |
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx | |
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle] | |
from ultralytics.yolo.engine.exporter import export_formats | |
sf = list(export_formats().Suffix) # export suffixes | |
if not is_url(p, check=False) and not isinstance(p, str): | |
check_suffix(p, sf) # checks | |
url = urlparse(p) # if url may be Triton inference server | |
types = [s in Path(p).name for s in sf] | |
types[8] &= not types[9] # tflite &= not edgetpu | |
triton = not any(types) and all([any(s in url.scheme for s in ['http', 'grpc']), url.netloc]) | |
return types + [triton] | |