Spaces:
Running
on
T4
Running
on
T4
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
""" | |
Common modules | |
""" | |
from copy import copy | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import requests | |
import torch | |
import torch.nn as nn | |
from PIL import Image, ImageOps | |
from torch.cuda import amp | |
from ultralytics.nn.autobackend import AutoBackend | |
from ultralytics.yolo.data.augment import LetterBox | |
from ultralytics.yolo.utils import LOGGER, colorstr | |
from ultralytics.yolo.utils.files import increment_path | |
from ultralytics.yolo.utils.ops import Profile, make_divisible, non_max_suppression, scale_boxes, xyxy2xywh | |
from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box | |
from ultralytics.yolo.utils.torch_utils import copy_attr, smart_inference_mode | |
class AutoShape(nn.Module): | |
"""YOLOv8 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS.""" | |
conf = 0.25 # NMS confidence threshold | |
iou = 0.45 # NMS IoU threshold | |
agnostic = False # NMS class-agnostic | |
multi_label = False # NMS multiple labels per box | |
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs | |
max_det = 1000 # maximum number of detections per image | |
amp = False # Automatic Mixed Precision (AMP) inference | |
def __init__(self, model, verbose=True): | |
"""Initializes object and copies attributes from model object.""" | |
super().__init__() | |
if verbose: | |
LOGGER.info('Adding AutoShape... ') | |
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes | |
self.dmb = isinstance(model, AutoBackend) # DetectMultiBackend() instance | |
self.pt = not self.dmb or model.pt # PyTorch model | |
self.model = model.eval() | |
if self.pt: | |
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect() | |
m.inplace = False # Detect.inplace=False for safe multithread inference | |
m.export = True # do not output loss values | |
def _apply(self, fn): | |
"""Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers.""" | |
self = super()._apply(fn) | |
if self.pt: | |
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect() | |
m.stride = fn(m.stride) | |
m.grid = list(map(fn, m.grid)) | |
if isinstance(m.anchor_grid, list): | |
m.anchor_grid = list(map(fn, m.anchor_grid)) | |
return self | |
def forward(self, ims, size=640, augment=False, profile=False): | |
"""Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:.""" | |
# file: ims = 'data/images/zidane.jpg' # str or PosixPath | |
# URI: = 'https://ultralytics.com/images/zidane.jpg' | |
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3) | |
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3) | |
# numpy: = np.zeros((640,1280,3)) # HWC | |
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) | |
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images | |
dt = (Profile(), Profile(), Profile()) | |
with dt[0]: | |
if isinstance(size, int): # expand | |
size = (size, size) | |
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param | |
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference | |
if isinstance(ims, torch.Tensor): # torch | |
with amp.autocast(autocast): | |
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference | |
# Preprocess | |
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images | |
shape0, shape1, files = [], [], [] # image and inference shapes, filenames | |
for i, im in enumerate(ims): | |
f = f'image{i}' # filename | |
if isinstance(im, (str, Path)): # filename or uri | |
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im | |
im = np.asarray(ImageOps.exif_transpose(im)) | |
elif isinstance(im, Image.Image): # PIL Image | |
im, f = np.asarray(ImageOps.exif_transpose(im)), getattr(im, 'filename', f) or f | |
files.append(Path(f).with_suffix('.jpg').name) | |
if im.shape[0] < 5: # image in CHW | |
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) | |
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input | |
s = im.shape[:2] # HWC | |
shape0.append(s) # image shape | |
g = max(size) / max(s) # gain | |
shape1.append([y * g for y in s]) | |
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update | |
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] if self.pt else size # inf shape | |
x = [LetterBox(shape1, auto=False)(image=im)['img'] for im in ims] # pad | |
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW | |
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32 | |
with amp.autocast(autocast): | |
# Inference | |
with dt[1]: | |
y = self.model(x, augment=augment) # forward | |
# Postprocess | |
with dt[2]: | |
y = non_max_suppression(y if self.dmb else y[0], | |
self.conf, | |
self.iou, | |
self.classes, | |
self.agnostic, | |
self.multi_label, | |
max_det=self.max_det) # NMS | |
for i in range(n): | |
scale_boxes(shape1, y[i][:, :4], shape0[i]) | |
return Detections(ims, y, files, dt, self.names, x.shape) | |
class Detections: | |
""" YOLOv8 detections class for inference results""" | |
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None): | |
"""Initialize object attributes for YOLO detection results.""" | |
super().__init__() | |
d = pred[0].device # device | |
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations | |
self.ims = ims # list of images as numpy arrays | |
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) | |
self.names = names # class names | |
self.files = files # image filenames | |
self.times = times # profiling times | |
self.xyxy = pred # xyxy pixels | |
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels | |
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized | |
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized | |
self.n = len(self.pred) # number of images (batch size) | |
self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms) | |
self.s = tuple(shape) # inference BCHW shape | |
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')): | |
"""Return performance metrics and optionally cropped/save images or results.""" | |
s, crops = '', [] | |
for i, (im, pred) in enumerate(zip(self.ims, self.pred)): | |
s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string | |
if pred.shape[0]: | |
for c in pred[:, -1].unique(): | |
n = (pred[:, -1] == c).sum() # detections per class | |
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string | |
s = s.rstrip(', ') | |
if show or save or render or crop: | |
annotator = Annotator(im, example=str(self.names)) | |
for *box, conf, cls in reversed(pred): # xyxy, confidence, class | |
label = f'{self.names[int(cls)]} {conf:.2f}' | |
if crop: | |
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None | |
crops.append({ | |
'box': box, | |
'conf': conf, | |
'cls': cls, | |
'label': label, | |
'im': save_one_box(box, im, file=file, save=save)}) | |
else: # all others | |
annotator.box_label(box, label if labels else '', color=colors(cls)) | |
im = annotator.im | |
else: | |
s += '(no detections)' | |
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np | |
if show: | |
im.show(self.files[i]) # show | |
if save: | |
f = self.files[i] | |
im.save(save_dir / f) # save | |
if i == self.n - 1: | |
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}") | |
if render: | |
self.ims[i] = np.asarray(im) | |
if pprint: | |
s = s.lstrip('\n') | |
return f'{s}\nSpeed: %.1fms preprocess, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t | |
if crop: | |
if save: | |
LOGGER.info(f'Saved results to {save_dir}\n') | |
return crops | |
def show(self, labels=True): | |
"""Displays YOLO results with detected bounding boxes.""" | |
self._run(show=True, labels=labels) # show results | |
def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False): | |
"""Save detection results with optional labels to specified directory.""" | |
save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir | |
self._run(save=True, labels=labels, save_dir=save_dir) # save results | |
def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False): | |
"""Crops images into detections and saves them if 'save' is True.""" | |
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None | |
return self._run(crop=True, save=save, save_dir=save_dir) # crop results | |
def render(self, labels=True): | |
"""Renders detected objects and returns images.""" | |
self._run(render=True, labels=labels) # render results | |
return self.ims | |
def pandas(self): | |
"""Return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0]).""" | |
import pandas | |
new = copy(self) # return copy | |
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns | |
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns | |
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): | |
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update | |
setattr(new, k, [pandas.DataFrame(x, columns=c) for x in a]) | |
return new | |
def tolist(self): | |
"""Return a list of Detections objects, i.e. 'for result in results.tolist():'.""" | |
r = range(self.n) # iterable | |
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r] | |
# for d in x: | |
# for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: | |
# setattr(d, k, getattr(d, k)[0]) # pop out of list | |
return x | |
def print(self): | |
"""Print the results of the `self._run()` function.""" | |
LOGGER.info(self.__str__()) | |
def __len__(self): # override len(results) | |
return self.n | |
def __str__(self): # override print(results) | |
return self._run(pprint=True) # print results | |
def __repr__(self): | |
"""Returns a printable representation of the object.""" | |
return f'YOLOv8 {self.__class__} instance\n' + self.__str__() | |