Spaces:
Running
on
T4
Running
on
T4
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
""" | |
RT-DETR model interface | |
""" | |
from pathlib import Path | |
import torch.nn as nn | |
from ultralytics.nn.tasks import RTDETRDetectionModel, attempt_load_one_weight, yaml_model_load | |
from ultralytics.yolo.cfg import get_cfg | |
from ultralytics.yolo.engine.exporter import Exporter | |
from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, RANK, ROOT, is_git_dir | |
from ultralytics.yolo.utils.checks import check_imgsz | |
from ultralytics.yolo.utils.torch_utils import model_info, smart_inference_mode | |
from .predict import RTDETRPredictor | |
from .train import RTDETRTrainer | |
from .val import RTDETRValidator | |
class RTDETR: | |
def __init__(self, model='rtdetr-l.pt') -> None: | |
if model and not model.endswith('.pt') and not model.endswith('.yaml'): | |
raise NotImplementedError('RT-DETR only supports creating from pt file or yaml file.') | |
# Load or create new YOLO model | |
self.predictor = None | |
self.ckpt = None | |
suffix = Path(model).suffix | |
if suffix == '.yaml': | |
self._new(model) | |
else: | |
self._load(model) | |
def _new(self, cfg: str, verbose=True): | |
cfg_dict = yaml_model_load(cfg) | |
self.cfg = cfg | |
self.task = 'detect' | |
self.model = RTDETRDetectionModel(cfg_dict, verbose=verbose) # build model | |
# Below added to allow export from YAMLs | |
self.model.args = DEFAULT_CFG_DICT # attach args to model | |
self.model.task = self.task | |
def _load(self, weights: str): | |
self.model, self.ckpt = attempt_load_one_weight(weights) | |
self.model.args = DEFAULT_CFG_DICT # attach args to model | |
self.task = self.model.args['task'] | |
def load(self, weights='yolov8n.pt'): | |
""" | |
Transfers parameters with matching names and shapes from 'weights' to model. | |
""" | |
if isinstance(weights, (str, Path)): | |
weights, self.ckpt = attempt_load_one_weight(weights) | |
self.model.load(weights) | |
return self | |
def predict(self, source=None, stream=False, **kwargs): | |
""" | |
Perform prediction using the YOLO model. | |
Args: | |
source (str | int | PIL | np.ndarray): The source of the image to make predictions on. | |
Accepts all source types accepted by the YOLO model. | |
stream (bool): Whether to stream the predictions or not. Defaults to False. | |
**kwargs : Additional keyword arguments passed to the predictor. | |
Check the 'configuration' section in the documentation for all available options. | |
Returns: | |
(List[ultralytics.yolo.engine.results.Results]): The prediction results. | |
""" | |
if source is None: | |
source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' | |
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.") | |
overrides = dict(conf=0.25, task='detect', mode='predict') | |
overrides.update(kwargs) # prefer kwargs | |
if not self.predictor: | |
self.predictor = RTDETRPredictor(overrides=overrides) | |
self.predictor.setup_model(model=self.model) | |
else: # only update args if predictor is already setup | |
self.predictor.args = get_cfg(self.predictor.args, overrides) | |
return self.predictor(source, stream=stream) | |
def train(self, **kwargs): | |
""" | |
Trains the model on a given dataset. | |
Args: | |
**kwargs (Any): Any number of arguments representing the training configuration. | |
""" | |
overrides = dict(task='detect', mode='train') | |
overrides.update(kwargs) | |
overrides['deterministic'] = False | |
if not overrides.get('data'): | |
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'") | |
if overrides.get('resume'): | |
overrides['resume'] = self.ckpt_path | |
self.task = overrides.get('task') or self.task | |
self.trainer = RTDETRTrainer(overrides=overrides) | |
if not overrides.get('resume'): # manually set model only if not resuming | |
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) | |
self.model = self.trainer.model | |
self.trainer.train() | |
# Update model and cfg after training | |
if RANK in (-1, 0): | |
self.model, _ = attempt_load_one_weight(str(self.trainer.best)) | |
self.overrides = self.model.args | |
self.metrics = getattr(self.trainer.validator, 'metrics', None) # TODO: no metrics returned by DDP | |
def val(self, **kwargs): | |
"""Run validation given dataset.""" | |
overrides = dict(task='detect', mode='val') | |
overrides.update(kwargs) # prefer kwargs | |
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) | |
args.imgsz = check_imgsz(args.imgsz, max_dim=1) | |
validator = RTDETRValidator(args=args) | |
validator(model=self.model) | |
self.metrics = validator.metrics | |
return validator.metrics | |
def info(self, verbose=True): | |
"""Get model info""" | |
return model_info(self.model, verbose=verbose) | |
def _check_is_pytorch_model(self): | |
""" | |
Raises TypeError is model is not a PyTorch model | |
""" | |
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == '.pt' | |
pt_module = isinstance(self.model, nn.Module) | |
if not (pt_module or pt_str): | |
raise TypeError(f"model='{self.model}' must be a *.pt PyTorch model, but is a different type. " | |
f'PyTorch models can be used to train, val, predict and export, i.e. ' | |
f"'yolo export model=yolov8n.pt', but exported formats like ONNX, TensorRT etc. only " | |
f"support 'predict' and 'val' modes, i.e. 'yolo predict model=yolov8n.onnx'.") | |
def fuse(self): | |
"""Fuse PyTorch Conv2d and BatchNorm2d layers.""" | |
self._check_is_pytorch_model() | |
self.model.fuse() | |
def export(self, **kwargs): | |
""" | |
Export model. | |
Args: | |
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs | |
""" | |
overrides = dict(task='detect') | |
overrides.update(kwargs) | |
overrides['mode'] = 'export' | |
args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) | |
args.task = self.task | |
if args.imgsz == DEFAULT_CFG.imgsz: | |
args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed | |
if args.batch == DEFAULT_CFG.batch: | |
args.batch = 1 # default to 1 if not modified | |
return Exporter(overrides=args)(model=self.model) | |
def __call__(self, source=None, stream=False, **kwargs): | |
"""Calls the 'predict' function with given arguments to perform object detection.""" | |
return self.predict(source, stream, **kwargs) | |
def __getattr__(self, attr): | |
"""Raises error if object has no requested attribute.""" | |
name = self.__class__.__name__ | |
raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") | |