Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import torch | |
from ultralytics.yolo.data import YOLODataset | |
from ultralytics.yolo.data.augment import Compose, Format, v8_transforms | |
from ultralytics.yolo.utils import colorstr, ops | |
from ultralytics.yolo.v8.detect import DetectionValidator | |
__all__ = 'RTDETRValidator', # tuple or list | |
# TODO: Temporarily, RT-DETR does not need padding. | |
class RTDETRDataset(YOLODataset): | |
def __init__(self, *args, data=None, **kwargs): | |
super().__init__(*args, data=data, use_segments=False, use_keypoints=False, **kwargs) | |
# NOTE: add stretch version load_image for rtdetr mosaic | |
def load_image(self, i): | |
"""Loads 1 image from dataset index 'i', returns (im, resized hw).""" | |
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i] | |
if im is None: # not cached in RAM | |
if fn.exists(): # load npy | |
im = np.load(fn) | |
else: # read image | |
im = cv2.imread(f) # BGR | |
if im is None: | |
raise FileNotFoundError(f'Image Not Found {f}') | |
h0, w0 = im.shape[:2] # orig hw | |
im = cv2.resize(im, (self.imgsz, self.imgsz), interpolation=cv2.INTER_LINEAR) | |
# Add to buffer if training with augmentations | |
if self.augment: | |
self.ims[i], self.im_hw0[i], self.im_hw[i] = im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized | |
self.buffer.append(i) | |
if len(self.buffer) >= self.max_buffer_length: | |
j = self.buffer.pop(0) | |
self.ims[j], self.im_hw0[j], self.im_hw[j] = None, None, None | |
return im, (h0, w0), im.shape[:2] | |
return self.ims[i], self.im_hw0[i], self.im_hw[i] | |
def build_transforms(self, hyp=None): | |
"""Temporarily, only for evaluation.""" | |
if self.augment: | |
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 | |
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 | |
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True) | |
else: | |
# transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)]) | |
transforms = Compose([]) | |
transforms.append( | |
Format(bbox_format='xywh', | |
normalize=True, | |
return_mask=self.use_segments, | |
return_keypoint=self.use_keypoints, | |
batch_idx=True, | |
mask_ratio=hyp.mask_ratio, | |
mask_overlap=hyp.overlap_mask)) | |
return transforms | |
class RTDETRValidator(DetectionValidator): | |
def build_dataset(self, img_path, mode='val', batch=None): | |
"""Build YOLO Dataset | |
Args: | |
img_path (str): Path to the folder containing images. | |
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. | |
batch (int, optional): Size of batches, this is for `rect`. Defaults to None. | |
""" | |
return RTDETRDataset( | |
img_path=img_path, | |
imgsz=self.args.imgsz, | |
batch_size=batch, | |
augment=False, # no augmentation | |
hyp=self.args, | |
rect=False, # no rect | |
cache=self.args.cache or None, | |
prefix=colorstr(f'{mode}: '), | |
data=self.data) | |
def postprocess(self, preds): | |
"""Apply Non-maximum suppression to prediction outputs.""" | |
bboxes, scores = preds[:2] # (1, bs, 300, 4), (1, bs, 300, nc) | |
bboxes, scores = bboxes.squeeze_(0), scores.squeeze_(0) # (bs, 300, 4) | |
bs = len(bboxes) | |
outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs | |
for i, bbox in enumerate(bboxes): # (300, 4) | |
bbox = ops.xywh2xyxy(bbox) | |
score, cls = scores[i].max(-1) # (300, ) | |
# Do not need threshold for evaluation as only got 300 boxes here. | |
# idx = score > self.args.conf | |
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter | |
# sort by confidence to correctly get internal metrics. | |
pred = pred[score.argsort(descending=True)] | |
outputs[i] = pred # [idx] | |
return outputs | |
def update_metrics(self, preds, batch): | |
"""Metrics.""" | |
for si, pred in enumerate(preds): | |
idx = batch['batch_idx'] == si | |
cls = batch['cls'][idx] | |
bbox = batch['bboxes'][idx] | |
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions | |
shape = batch['ori_shape'][si] | |
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init | |
self.seen += 1 | |
if npr == 0: | |
if nl: | |
self.stats.append((correct_bboxes, *torch.zeros((2, 0), device=self.device), cls.squeeze(-1))) | |
if self.args.plots: | |
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1)) | |
continue | |
# Predictions | |
if self.args.single_cls: | |
pred[:, 5] = 0 | |
predn = pred.clone() | |
predn[..., [0, 2]] *= shape[1] # native-space pred | |
predn[..., [1, 3]] *= shape[0] # native-space pred | |
# Evaluate | |
if nl: | |
tbox = ops.xywh2xyxy(bbox) # target boxes | |
tbox[..., [0, 2]] *= shape[1] # native-space pred | |
tbox[..., [1, 3]] *= shape[0] # native-space pred | |
labelsn = torch.cat((cls, tbox), 1) # native-space labels | |
# NOTE: To get correct metrics, the inputs of `_process_batch` should always be float32 type. | |
correct_bboxes = self._process_batch(predn.float(), labelsn) | |
# TODO: maybe remove these `self.` arguments as they already are member variable | |
if self.args.plots: | |
self.confusion_matrix.process_batch(predn, labelsn) | |
self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls) | |
# Save | |
if self.args.save_json: | |
self.pred_to_json(predn, batch['im_file'][si]) | |
if self.args.save_txt: | |
file = self.save_dir / 'labels' / f'{Path(batch["im_file"][si]).stem}.txt' | |
self.save_one_txt(predn, self.args.save_conf, shape, file) | |