Spaces:
Running
on
T4
Running
on
T4
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import math | |
import random | |
from copy import deepcopy | |
import cv2 | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from ..utils import LOGGER, colorstr | |
from ..utils.checks import check_version | |
from ..utils.instance import Instances | |
from ..utils.metrics import bbox_ioa | |
from ..utils.ops import segment2box | |
from .utils import polygons2masks, polygons2masks_overlap | |
POSE_FLIPLR_INDEX = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] | |
# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic | |
class BaseTransform: | |
def __init__(self) -> None: | |
pass | |
def apply_image(self, labels): | |
"""Applies image transformation to labels.""" | |
pass | |
def apply_instances(self, labels): | |
"""Applies transformations to input 'labels' and returns object instances.""" | |
pass | |
def apply_semantic(self, labels): | |
"""Applies semantic segmentation to an image.""" | |
pass | |
def __call__(self, labels): | |
"""Applies label transformations to an image, instances and semantic masks.""" | |
self.apply_image(labels) | |
self.apply_instances(labels) | |
self.apply_semantic(labels) | |
class Compose: | |
def __init__(self, transforms): | |
"""Initializes the Compose object with a list of transforms.""" | |
self.transforms = transforms | |
def __call__(self, data): | |
"""Applies a series of transformations to input data.""" | |
for t in self.transforms: | |
data = t(data) | |
return data | |
def append(self, transform): | |
"""Appends a new transform to the existing list of transforms.""" | |
self.transforms.append(transform) | |
def tolist(self): | |
"""Converts list of transforms to a standard Python list.""" | |
return self.transforms | |
def __repr__(self): | |
"""Return string representation of object.""" | |
format_string = f'{self.__class__.__name__}(' | |
for t in self.transforms: | |
format_string += '\n' | |
format_string += f' {t}' | |
format_string += '\n)' | |
return format_string | |
class BaseMixTransform: | |
"""This implementation is from mmyolo.""" | |
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: | |
self.dataset = dataset | |
self.pre_transform = pre_transform | |
self.p = p | |
def __call__(self, labels): | |
"""Applies pre-processing transforms and mixup/mosaic transforms to labels data.""" | |
if random.uniform(0, 1) > self.p: | |
return labels | |
# Get index of one or three other images | |
indexes = self.get_indexes() | |
if isinstance(indexes, int): | |
indexes = [indexes] | |
# Get images information will be used for Mosaic or MixUp | |
mix_labels = [self.dataset.get_image_and_label(i) for i in indexes] | |
if self.pre_transform is not None: | |
for i, data in enumerate(mix_labels): | |
mix_labels[i] = self.pre_transform(data) | |
labels['mix_labels'] = mix_labels | |
# Mosaic or MixUp | |
labels = self._mix_transform(labels) | |
labels.pop('mix_labels', None) | |
return labels | |
def _mix_transform(self, labels): | |
"""Applies MixUp or Mosaic augmentation to the label dictionary.""" | |
raise NotImplementedError | |
def get_indexes(self): | |
"""Gets a list of shuffled indexes for mosaic augmentation.""" | |
raise NotImplementedError | |
class Mosaic(BaseMixTransform): | |
""" | |
Mosaic augmentation. | |
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image. | |
The augmentation is applied to a dataset with a given probability. | |
Attributes: | |
dataset: The dataset on which the mosaic augmentation is applied. | |
imgsz (int, optional): Image size (height and width) after mosaic pipeline of a single image. Default to 640. | |
p (float, optional): Probability of applying the mosaic augmentation. Must be in the range 0-1. Default to 1.0. | |
n (int, optional): The grid size, either 4 (for 2x2) or 9 (for 3x3). | |
""" | |
def __init__(self, dataset, imgsz=640, p=1.0, n=4): | |
"""Initializes the object with a dataset, image size, probability, and border.""" | |
assert 0 <= p <= 1.0, f'The probability should be in range [0, 1], but got {p}.' | |
assert n in (4, 9), 'grid must be equal to 4 or 9.' | |
super().__init__(dataset=dataset, p=p) | |
self.dataset = dataset | |
self.imgsz = imgsz | |
self.border = (-imgsz // 2, -imgsz // 2) # width, height | |
self.n = n | |
def get_indexes(self, buffer=True): | |
"""Return a list of random indexes from the dataset.""" | |
if buffer: # select images from buffer | |
return random.choices(list(self.dataset.buffer), k=self.n - 1) | |
else: # select any images | |
return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)] | |
def _mix_transform(self, labels): | |
"""Apply mixup transformation to the input image and labels.""" | |
assert labels.get('rect_shape', None) is None, 'rect and mosaic are mutually exclusive.' | |
assert len(labels.get('mix_labels', [])), 'There are no other images for mosaic augment.' | |
return self._mosaic4(labels) if self.n == 4 else self._mosaic9(labels) | |
def _mosaic4(self, labels): | |
"""Create a 2x2 image mosaic.""" | |
mosaic_labels = [] | |
s = self.imgsz | |
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y | |
for i in range(4): | |
labels_patch = labels if i == 0 else labels['mix_labels'][i - 1] | |
# Load image | |
img = labels_patch['img'] | |
h, w = labels_patch.pop('resized_shape') | |
# Place img in img4 | |
if i == 0: # top left | |
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles | |
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) | |
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) | |
elif i == 1: # top right | |
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc | |
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h | |
elif i == 2: # bottom left | |
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) | |
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) | |
elif i == 3: # bottom right | |
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) | |
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) | |
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] | |
padw = x1a - x1b | |
padh = y1a - y1b | |
labels_patch = self._update_labels(labels_patch, padw, padh) | |
mosaic_labels.append(labels_patch) | |
final_labels = self._cat_labels(mosaic_labels) | |
final_labels['img'] = img4 | |
return final_labels | |
def _mosaic9(self, labels): | |
"""Create a 3x3 image mosaic.""" | |
mosaic_labels = [] | |
s = self.imgsz | |
hp, wp = -1, -1 # height, width previous | |
for i in range(9): | |
labels_patch = labels if i == 0 else labels['mix_labels'][i - 1] | |
# Load image | |
img = labels_patch['img'] | |
h, w = labels_patch.pop('resized_shape') | |
# Place img in img9 | |
if i == 0: # center | |
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles | |
h0, w0 = h, w | |
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates | |
elif i == 1: # top | |
c = s, s - h, s + w, s | |
elif i == 2: # top right | |
c = s + wp, s - h, s + wp + w, s | |
elif i == 3: # right | |
c = s + w0, s, s + w0 + w, s + h | |
elif i == 4: # bottom right | |
c = s + w0, s + hp, s + w0 + w, s + hp + h | |
elif i == 5: # bottom | |
c = s + w0 - w, s + h0, s + w0, s + h0 + h | |
elif i == 6: # bottom left | |
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h | |
elif i == 7: # left | |
c = s - w, s + h0 - h, s, s + h0 | |
elif i == 8: # top left | |
c = s - w, s + h0 - hp - h, s, s + h0 - hp | |
padw, padh = c[:2] | |
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords | |
# Image | |
img9[y1:y2, x1:x2] = img[y1 - padh:, x1 - padw:] # img9[ymin:ymax, xmin:xmax] | |
hp, wp = h, w # height, width previous for next iteration | |
# Labels assuming imgsz*2 mosaic size | |
labels_patch = self._update_labels(labels_patch, padw + self.border[0], padh + self.border[1]) | |
mosaic_labels.append(labels_patch) | |
final_labels = self._cat_labels(mosaic_labels) | |
final_labels['img'] = img9[-self.border[0]:self.border[0], -self.border[1]:self.border[1]] | |
return final_labels | |
def _update_labels(labels, padw, padh): | |
"""Update labels.""" | |
nh, nw = labels['img'].shape[:2] | |
labels['instances'].convert_bbox(format='xyxy') | |
labels['instances'].denormalize(nw, nh) | |
labels['instances'].add_padding(padw, padh) | |
return labels | |
def _cat_labels(self, mosaic_labels): | |
"""Return labels with mosaic border instances clipped.""" | |
if len(mosaic_labels) == 0: | |
return {} | |
cls = [] | |
instances = [] | |
imgsz = self.imgsz * 2 # mosaic imgsz | |
for labels in mosaic_labels: | |
cls.append(labels['cls']) | |
instances.append(labels['instances']) | |
final_labels = { | |
'im_file': mosaic_labels[0]['im_file'], | |
'ori_shape': mosaic_labels[0]['ori_shape'], | |
'resized_shape': (imgsz, imgsz), | |
'cls': np.concatenate(cls, 0), | |
'instances': Instances.concatenate(instances, axis=0), | |
'mosaic_border': self.border} # final_labels | |
final_labels['instances'].clip(imgsz, imgsz) | |
good = final_labels['instances'].remove_zero_area_boxes() | |
final_labels['cls'] = final_labels['cls'][good] | |
return final_labels | |
class MixUp(BaseMixTransform): | |
def __init__(self, dataset, pre_transform=None, p=0.0) -> None: | |
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p) | |
def get_indexes(self): | |
"""Get a random index from the dataset.""" | |
return random.randint(0, len(self.dataset) - 1) | |
def _mix_transform(self, labels): | |
"""Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf.""" | |
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 | |
labels2 = labels['mix_labels'][0] | |
labels['img'] = (labels['img'] * r + labels2['img'] * (1 - r)).astype(np.uint8) | |
labels['instances'] = Instances.concatenate([labels['instances'], labels2['instances']], axis=0) | |
labels['cls'] = np.concatenate([labels['cls'], labels2['cls']], 0) | |
return labels | |
class RandomPerspective: | |
def __init__(self, | |
degrees=0.0, | |
translate=0.1, | |
scale=0.5, | |
shear=0.0, | |
perspective=0.0, | |
border=(0, 0), | |
pre_transform=None): | |
self.degrees = degrees | |
self.translate = translate | |
self.scale = scale | |
self.shear = shear | |
self.perspective = perspective | |
# Mosaic border | |
self.border = border | |
self.pre_transform = pre_transform | |
def affine_transform(self, img, border): | |
"""Center.""" | |
C = np.eye(3, dtype=np.float32) | |
C[0, 2] = -img.shape[1] / 2 # x translation (pixels) | |
C[1, 2] = -img.shape[0] / 2 # y translation (pixels) | |
# Perspective | |
P = np.eye(3, dtype=np.float32) | |
P[2, 0] = random.uniform(-self.perspective, self.perspective) # x perspective (about y) | |
P[2, 1] = random.uniform(-self.perspective, self.perspective) # y perspective (about x) | |
# Rotation and Scale | |
R = np.eye(3, dtype=np.float32) | |
a = random.uniform(-self.degrees, self.degrees) | |
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations | |
s = random.uniform(1 - self.scale, 1 + self.scale) | |
# s = 2 ** random.uniform(-scale, scale) | |
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) | |
# Shear | |
S = np.eye(3, dtype=np.float32) | |
S[0, 1] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # x shear (deg) | |
S[1, 0] = math.tan(random.uniform(-self.shear, self.shear) * math.pi / 180) # y shear (deg) | |
# Translation | |
T = np.eye(3, dtype=np.float32) | |
T[0, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[0] # x translation (pixels) | |
T[1, 2] = random.uniform(0.5 - self.translate, 0.5 + self.translate) * self.size[1] # y translation (pixels) | |
# Combined rotation matrix | |
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT | |
# Affine image | |
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed | |
if self.perspective: | |
img = cv2.warpPerspective(img, M, dsize=self.size, borderValue=(114, 114, 114)) | |
else: # affine | |
img = cv2.warpAffine(img, M[:2], dsize=self.size, borderValue=(114, 114, 114)) | |
return img, M, s | |
def apply_bboxes(self, bboxes, M): | |
""" | |
Apply affine to bboxes only. | |
Args: | |
bboxes (ndarray): list of bboxes, xyxy format, with shape (num_bboxes, 4). | |
M (ndarray): affine matrix. | |
Returns: | |
new_bboxes (ndarray): bboxes after affine, [num_bboxes, 4]. | |
""" | |
n = len(bboxes) | |
if n == 0: | |
return bboxes | |
xy = np.ones((n * 4, 3), dtype=bboxes.dtype) | |
xy[:, :2] = bboxes[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 | |
xy = xy @ M.T # transform | |
xy = (xy[:, :2] / xy[:, 2:3] if self.perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine | |
# Create new boxes | |
x = xy[:, [0, 2, 4, 6]] | |
y = xy[:, [1, 3, 5, 7]] | |
return np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1)), dtype=bboxes.dtype).reshape(4, n).T | |
def apply_segments(self, segments, M): | |
""" | |
Apply affine to segments and generate new bboxes from segments. | |
Args: | |
segments (ndarray): list of segments, [num_samples, 500, 2]. | |
M (ndarray): affine matrix. | |
Returns: | |
new_segments (ndarray): list of segments after affine, [num_samples, 500, 2]. | |
new_bboxes (ndarray): bboxes after affine, [N, 4]. | |
""" | |
n, num = segments.shape[:2] | |
if n == 0: | |
return [], segments | |
xy = np.ones((n * num, 3), dtype=segments.dtype) | |
segments = segments.reshape(-1, 2) | |
xy[:, :2] = segments | |
xy = xy @ M.T # transform | |
xy = xy[:, :2] / xy[:, 2:3] | |
segments = xy.reshape(n, -1, 2) | |
bboxes = np.stack([segment2box(xy, self.size[0], self.size[1]) for xy in segments], 0) | |
return bboxes, segments | |
def apply_keypoints(self, keypoints, M): | |
""" | |
Apply affine to keypoints. | |
Args: | |
keypoints (ndarray): keypoints, [N, 17, 3]. | |
M (ndarray): affine matrix. | |
Return: | |
new_keypoints (ndarray): keypoints after affine, [N, 17, 3]. | |
""" | |
n, nkpt = keypoints.shape[:2] | |
if n == 0: | |
return keypoints | |
xy = np.ones((n * nkpt, 3), dtype=keypoints.dtype) | |
visible = keypoints[..., 2].reshape(n * nkpt, 1) | |
xy[:, :2] = keypoints[..., :2].reshape(n * nkpt, 2) | |
xy = xy @ M.T # transform | |
xy = xy[:, :2] / xy[:, 2:3] # perspective rescale or affine | |
out_mask = (xy[:, 0] < 0) | (xy[:, 1] < 0) | (xy[:, 0] > self.size[0]) | (xy[:, 1] > self.size[1]) | |
visible[out_mask] = 0 | |
return np.concatenate([xy, visible], axis=-1).reshape(n, nkpt, 3) | |
def __call__(self, labels): | |
""" | |
Affine images and targets. | |
Args: | |
labels (dict): a dict of `bboxes`, `segments`, `keypoints`. | |
""" | |
if self.pre_transform and 'mosaic_border' not in labels: | |
labels = self.pre_transform(labels) | |
labels.pop('ratio_pad') # do not need ratio pad | |
img = labels['img'] | |
cls = labels['cls'] | |
instances = labels.pop('instances') | |
# Make sure the coord formats are right | |
instances.convert_bbox(format='xyxy') | |
instances.denormalize(*img.shape[:2][::-1]) | |
border = labels.pop('mosaic_border', self.border) | |
self.size = img.shape[1] + border[1] * 2, img.shape[0] + border[0] * 2 # w, h | |
# M is affine matrix | |
# scale for func:`box_candidates` | |
img, M, scale = self.affine_transform(img, border) | |
bboxes = self.apply_bboxes(instances.bboxes, M) | |
segments = instances.segments | |
keypoints = instances.keypoints | |
# Update bboxes if there are segments. | |
if len(segments): | |
bboxes, segments = self.apply_segments(segments, M) | |
if keypoints is not None: | |
keypoints = self.apply_keypoints(keypoints, M) | |
new_instances = Instances(bboxes, segments, keypoints, bbox_format='xyxy', normalized=False) | |
# Clip | |
new_instances.clip(*self.size) | |
# Filter instances | |
instances.scale(scale_w=scale, scale_h=scale, bbox_only=True) | |
# Make the bboxes have the same scale with new_bboxes | |
i = self.box_candidates(box1=instances.bboxes.T, | |
box2=new_instances.bboxes.T, | |
area_thr=0.01 if len(segments) else 0.10) | |
labels['instances'] = new_instances[i] | |
labels['cls'] = cls[i] | |
labels['img'] = img | |
labels['resized_shape'] = img.shape[:2] | |
return labels | |
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) | |
# Compute box candidates: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio | |
w1, h1 = box1[2] - box1[0], box1[3] - box1[1] | |
w2, h2 = box2[2] - box2[0], box2[3] - box2[1] | |
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio | |
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates | |
class RandomHSV: | |
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None: | |
self.hgain = hgain | |
self.sgain = sgain | |
self.vgain = vgain | |
def __call__(self, labels): | |
"""Applies random horizontal or vertical flip to an image with a given probability.""" | |
img = labels['img'] | |
if self.hgain or self.sgain or self.vgain: | |
r = np.random.uniform(-1, 1, 3) * [self.hgain, self.sgain, self.vgain] + 1 # random gains | |
hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) | |
dtype = img.dtype # uint8 | |
x = np.arange(0, 256, dtype=r.dtype) | |
lut_hue = ((x * r[0]) % 180).astype(dtype) | |
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) | |
lut_val = np.clip(x * r[2], 0, 255).astype(dtype) | |
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) | |
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed | |
return labels | |
class RandomFlip: | |
def __init__(self, p=0.5, direction='horizontal', flip_idx=None) -> None: | |
assert direction in ['horizontal', 'vertical'], f'Support direction `horizontal` or `vertical`, got {direction}' | |
assert 0 <= p <= 1.0 | |
self.p = p | |
self.direction = direction | |
self.flip_idx = flip_idx | |
def __call__(self, labels): | |
"""Resize image and padding for detection, instance segmentation, pose.""" | |
img = labels['img'] | |
instances = labels.pop('instances') | |
instances.convert_bbox(format='xywh') | |
h, w = img.shape[:2] | |
h = 1 if instances.normalized else h | |
w = 1 if instances.normalized else w | |
# Flip up-down | |
if self.direction == 'vertical' and random.random() < self.p: | |
img = np.flipud(img) | |
instances.flipud(h) | |
if self.direction == 'horizontal' and random.random() < self.p: | |
img = np.fliplr(img) | |
instances.fliplr(w) | |
# For keypoints | |
if self.flip_idx is not None and instances.keypoints is not None: | |
instances.keypoints = np.ascontiguousarray(instances.keypoints[:, self.flip_idx, :]) | |
labels['img'] = np.ascontiguousarray(img) | |
labels['instances'] = instances | |
return labels | |
class LetterBox: | |
"""Resize image and padding for detection, instance segmentation, pose.""" | |
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32): | |
"""Initialize LetterBox object with specific parameters.""" | |
self.new_shape = new_shape | |
self.auto = auto | |
self.scaleFill = scaleFill | |
self.scaleup = scaleup | |
self.stride = stride | |
def __call__(self, labels=None, image=None): | |
"""Return updated labels and image with added border.""" | |
if labels is None: | |
labels = {} | |
img = labels.get('img') if image is None else image | |
shape = img.shape[:2] # current shape [height, width] | |
new_shape = labels.pop('rect_shape', self.new_shape) | |
if isinstance(new_shape, int): | |
new_shape = (new_shape, new_shape) | |
# Scale ratio (new / old) | |
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) | |
if not self.scaleup: # only scale down, do not scale up (for better val mAP) | |
r = min(r, 1.0) | |
# Compute padding | |
ratio = r, r # width, height ratios | |
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) | |
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding | |
if self.auto: # minimum rectangle | |
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding | |
elif self.scaleFill: # stretch | |
dw, dh = 0.0, 0.0 | |
new_unpad = (new_shape[1], new_shape[0]) | |
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios | |
dw /= 2 # divide padding into 2 sides | |
dh /= 2 | |
if labels.get('ratio_pad'): | |
labels['ratio_pad'] = (labels['ratio_pad'], (dw, dh)) # for evaluation | |
if shape[::-1] != new_unpad: # resize | |
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) | |
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) | |
left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) | |
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, | |
value=(114, 114, 114)) # add border | |
if len(labels): | |
labels = self._update_labels(labels, ratio, dw, dh) | |
labels['img'] = img | |
labels['resized_shape'] = new_shape | |
return labels | |
else: | |
return img | |
def _update_labels(self, labels, ratio, padw, padh): | |
"""Update labels.""" | |
labels['instances'].convert_bbox(format='xyxy') | |
labels['instances'].denormalize(*labels['img'].shape[:2][::-1]) | |
labels['instances'].scale(*ratio) | |
labels['instances'].add_padding(padw, padh) | |
return labels | |
class CopyPaste: | |
def __init__(self, p=0.5) -> None: | |
self.p = p | |
def __call__(self, labels): | |
"""Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy).""" | |
im = labels['img'] | |
cls = labels['cls'] | |
h, w = im.shape[:2] | |
instances = labels.pop('instances') | |
instances.convert_bbox(format='xyxy') | |
instances.denormalize(w, h) | |
if self.p and len(instances.segments): | |
n = len(instances) | |
_, w, _ = im.shape # height, width, channels | |
im_new = np.zeros(im.shape, np.uint8) | |
# Calculate ioa first then select indexes randomly | |
ins_flip = deepcopy(instances) | |
ins_flip.fliplr(w) | |
ioa = bbox_ioa(ins_flip.bboxes, instances.bboxes) # intersection over area, (N, M) | |
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, ) | |
n = len(indexes) | |
for j in random.sample(list(indexes), k=round(self.p * n)): | |
cls = np.concatenate((cls, cls[[j]]), axis=0) | |
instances = Instances.concatenate((instances, ins_flip[[j]]), axis=0) | |
cv2.drawContours(im_new, instances.segments[[j]].astype(np.int32), -1, (1, 1, 1), cv2.FILLED) | |
result = cv2.flip(im, 1) # augment segments (flip left-right) | |
i = cv2.flip(im_new, 1).astype(bool) | |
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug | |
labels['img'] = im | |
labels['cls'] = cls | |
labels['instances'] = instances | |
return labels | |
class Albumentations: | |
# YOLOv8 Albumentations class (optional, only used if package is installed) | |
def __init__(self, p=1.0): | |
"""Initialize the transform object for YOLO bbox formatted params.""" | |
self.p = p | |
self.transform = None | |
prefix = colorstr('albumentations: ') | |
try: | |
import albumentations as A | |
check_version(A.__version__, '1.0.3', hard=True) # version requirement | |
T = [ | |
A.Blur(p=0.01), | |
A.MedianBlur(p=0.01), | |
A.ToGray(p=0.01), | |
A.CLAHE(p=0.01), | |
A.RandomBrightnessContrast(p=0.0), | |
A.RandomGamma(p=0.0), | |
A.ImageCompression(quality_lower=75, p=0.0)] # transforms | |
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'])) | |
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) | |
except ImportError: # package not installed, skip | |
pass | |
except Exception as e: | |
LOGGER.info(f'{prefix}{e}') | |
def __call__(self, labels): | |
"""Generates object detections and returns a dictionary with detection results.""" | |
im = labels['img'] | |
cls = labels['cls'] | |
if len(cls): | |
labels['instances'].convert_bbox('xywh') | |
labels['instances'].normalize(*im.shape[:2][::-1]) | |
bboxes = labels['instances'].bboxes | |
# TODO: add supports of segments and keypoints | |
if self.transform and random.random() < self.p: | |
new = self.transform(image=im, bboxes=bboxes, class_labels=cls) # transformed | |
if len(new['class_labels']) > 0: # skip update if no bbox in new im | |
labels['img'] = new['image'] | |
labels['cls'] = np.array(new['class_labels']) | |
bboxes = np.array(new['bboxes'], dtype=np.float32) | |
labels['instances'].update(bboxes=bboxes) | |
return labels | |
# TODO: technically this is not an augmentation, maybe we should put this to another files | |
class Format: | |
def __init__(self, | |
bbox_format='xywh', | |
normalize=True, | |
return_mask=False, | |
return_keypoint=False, | |
mask_ratio=4, | |
mask_overlap=True, | |
batch_idx=True): | |
self.bbox_format = bbox_format | |
self.normalize = normalize | |
self.return_mask = return_mask # set False when training detection only | |
self.return_keypoint = return_keypoint | |
self.mask_ratio = mask_ratio | |
self.mask_overlap = mask_overlap | |
self.batch_idx = batch_idx # keep the batch indexes | |
def __call__(self, labels): | |
"""Return formatted image, classes, bounding boxes & keypoints to be used by 'collate_fn'.""" | |
img = labels.pop('img') | |
h, w = img.shape[:2] | |
cls = labels.pop('cls') | |
instances = labels.pop('instances') | |
instances.convert_bbox(format=self.bbox_format) | |
instances.denormalize(w, h) | |
nl = len(instances) | |
if self.return_mask: | |
if nl: | |
masks, instances, cls = self._format_segments(instances, cls, w, h) | |
masks = torch.from_numpy(masks) | |
else: | |
masks = torch.zeros(1 if self.mask_overlap else nl, img.shape[0] // self.mask_ratio, | |
img.shape[1] // self.mask_ratio) | |
labels['masks'] = masks | |
if self.normalize: | |
instances.normalize(w, h) | |
labels['img'] = self._format_img(img) | |
labels['cls'] = torch.from_numpy(cls) if nl else torch.zeros(nl) | |
labels['bboxes'] = torch.from_numpy(instances.bboxes) if nl else torch.zeros((nl, 4)) | |
if self.return_keypoint: | |
labels['keypoints'] = torch.from_numpy(instances.keypoints) | |
# Then we can use collate_fn | |
if self.batch_idx: | |
labels['batch_idx'] = torch.zeros(nl) | |
return labels | |
def _format_img(self, img): | |
"""Format the image for YOLOv5 from Numpy array to PyTorch tensor.""" | |
if len(img.shape) < 3: | |
img = np.expand_dims(img, -1) | |
img = np.ascontiguousarray(img.transpose(2, 0, 1)[::-1]) | |
img = torch.from_numpy(img) | |
return img | |
def _format_segments(self, instances, cls, w, h): | |
"""convert polygon points to bitmap.""" | |
segments = instances.segments | |
if self.mask_overlap: | |
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio) | |
masks = masks[None] # (640, 640) -> (1, 640, 640) | |
instances = instances[sorted_idx] | |
cls = cls[sorted_idx] | |
else: | |
masks = polygons2masks((h, w), segments, color=1, downsample_ratio=self.mask_ratio) | |
return masks, instances, cls | |
def v8_transforms(dataset, imgsz, hyp, stretch=False): | |
"""Convert images to a size suitable for YOLOv8 training.""" | |
pre_transform = Compose([ | |
Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic), | |
CopyPaste(p=hyp.copy_paste), | |
RandomPerspective( | |
degrees=hyp.degrees, | |
translate=hyp.translate, | |
scale=hyp.scale, | |
shear=hyp.shear, | |
perspective=hyp.perspective, | |
pre_transform=None if stretch else LetterBox(new_shape=(imgsz, imgsz)), | |
)]) | |
flip_idx = dataset.data.get('flip_idx', None) # for keypoints augmentation | |
if dataset.use_keypoints: | |
kpt_shape = dataset.data.get('kpt_shape', None) | |
if flip_idx is None and hyp.fliplr > 0.0: | |
hyp.fliplr = 0.0 | |
LOGGER.warning("WARNING ⚠️ No 'flip_idx' array defined in data.yaml, setting augmentation 'fliplr=0.0'") | |
elif flip_idx and (len(flip_idx) != kpt_shape[0]): | |
raise ValueError(f'data.yaml flip_idx={flip_idx} length must be equal to kpt_shape[0]={kpt_shape[0]}') | |
return Compose([ | |
pre_transform, | |
MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup), | |
Albumentations(p=1.0), | |
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v), | |
RandomFlip(direction='vertical', p=hyp.flipud), | |
RandomFlip(direction='horizontal', p=hyp.fliplr, flip_idx=flip_idx)]) # transforms | |
# Classification augmentations ----------------------------------------------------------------------------------------- | |
def classify_transforms(size=224, mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0)): # IMAGENET_MEAN, IMAGENET_STD | |
# Transforms to apply if albumentations not installed | |
if not isinstance(size, int): | |
raise TypeError(f'classify_transforms() size {size} must be integer, not (list, tuple)') | |
if any(mean) or any(std): | |
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(mean, std, inplace=True)]) | |
else: | |
return T.Compose([CenterCrop(size), ToTensor()]) | |
def hsv2colorjitter(h, s, v): | |
"""Map HSV (hue, saturation, value) jitter into ColorJitter values (brightness, contrast, saturation, hue)""" | |
return v, v, s, h | |
def classify_albumentations( | |
augment=True, | |
size=224, | |
scale=(0.08, 1.0), | |
hflip=0.5, | |
vflip=0.0, | |
hsv_h=0.015, # image HSV-Hue augmentation (fraction) | |
hsv_s=0.7, # image HSV-Saturation augmentation (fraction) | |
hsv_v=0.4, # image HSV-Value augmentation (fraction) | |
mean=(0.0, 0.0, 0.0), # IMAGENET_MEAN | |
std=(1.0, 1.0, 1.0), # IMAGENET_STD | |
auto_aug=False, | |
): | |
# YOLOv8 classification Albumentations (optional, only used if package is installed) | |
prefix = colorstr('albumentations: ') | |
try: | |
import albumentations as A | |
from albumentations.pytorch import ToTensorV2 | |
check_version(A.__version__, '1.0.3', hard=True) # version requirement | |
if augment: # Resize and crop | |
T = [A.RandomResizedCrop(height=size, width=size, scale=scale)] | |
if auto_aug: | |
# TODO: implement AugMix, AutoAug & RandAug in albumentations | |
LOGGER.info(f'{prefix}auto augmentations are currently not supported') | |
else: | |
if hflip > 0: | |
T += [A.HorizontalFlip(p=hflip)] | |
if vflip > 0: | |
T += [A.VerticalFlip(p=vflip)] | |
if any((hsv_h, hsv_s, hsv_v)): | |
T += [A.ColorJitter(*hsv2colorjitter(hsv_h, hsv_s, hsv_v))] # brightness, contrast, saturation, hue | |
else: # Use fixed crop for eval set (reproducibility) | |
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)] | |
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor | |
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p)) | |
return A.Compose(T) | |
except ImportError: # package not installed, skip | |
pass | |
except Exception as e: | |
LOGGER.info(f'{prefix}{e}') | |
class ClassifyLetterBox: | |
# YOLOv8 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) | |
def __init__(self, size=(640, 640), auto=False, stride=32): | |
"""Resizes image and crops it to center with max dimensions 'h' and 'w'.""" | |
super().__init__() | |
self.h, self.w = (size, size) if isinstance(size, int) else size | |
self.auto = auto # pass max size integer, automatically solve for short side using stride | |
self.stride = stride # used with auto | |
def __call__(self, im): # im = np.array HWC | |
imh, imw = im.shape[:2] | |
r = min(self.h / imh, self.w / imw) # ratio of new/old | |
h, w = round(imh * r), round(imw * r) # resized image | |
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w | |
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1) | |
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype) | |
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR) | |
return im_out | |
class CenterCrop: | |
# YOLOv8 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()]) | |
def __init__(self, size=640): | |
"""Converts an image from numpy array to PyTorch tensor.""" | |
super().__init__() | |
self.h, self.w = (size, size) if isinstance(size, int) else size | |
def __call__(self, im): # im = np.array HWC | |
imh, imw = im.shape[:2] | |
m = min(imh, imw) # min dimension | |
top, left = (imh - m) // 2, (imw - m) // 2 | |
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR) | |
class ToTensor: | |
# YOLOv8 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()]) | |
def __init__(self, half=False): | |
"""Initialize YOLOv8 ToTensor object with optional half-precision support.""" | |
super().__init__() | |
self.half = half | |
def __call__(self, im): # im = np.array HWC in BGR order | |
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous | |
im = torch.from_numpy(im) # to torch | |
im = im.half() if self.half else im.float() # uint8 to fp16/32 | |
im /= 255.0 # 0-255 to 0.0-1.0 | |
return im | |