Spaces:
Sleeping
Sleeping
import json | |
from collections import defaultdict | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
from tqdm import tqdm | |
from ultralytics.yolo.utils.checks import check_requirements | |
from ultralytics.yolo.utils.files import make_dirs | |
def coco91_to_coco80_class(): | |
"""Converts 91-index COCO class IDs to 80-index COCO class IDs. | |
Returns: | |
(list): A list of 91 class IDs where the index represents the 80-index class ID and the value is the | |
corresponding 91-index class ID. | |
""" | |
return [ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None, | |
None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, | |
51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, | |
None, 73, 74, 75, 76, 77, 78, 79, None] | |
def convert_coco(labels_dir='../coco/annotations/', use_segments=False, use_keypoints=False, cls91to80=True): | |
"""Converts COCO dataset annotations to a format suitable for training YOLOv5 models. | |
Args: | |
labels_dir (str, optional): Path to directory containing COCO dataset annotation files. | |
use_segments (bool, optional): Whether to include segmentation masks in the output. | |
use_keypoints (bool, optional): Whether to include keypoint annotations in the output. | |
cls91to80 (bool, optional): Whether to map 91 COCO class IDs to the corresponding 80 COCO class IDs. | |
Raises: | |
FileNotFoundError: If the labels_dir path does not exist. | |
Example Usage: | |
convert_coco(labels_dir='../coco/annotations/', use_segments=True, use_keypoints=True, cls91to80=True) | |
Output: | |
Generates output files in the specified output directory. | |
""" | |
save_dir = make_dirs('yolo_labels') # output directory | |
coco80 = coco91_to_coco80_class() | |
# Import json | |
for json_file in sorted(Path(labels_dir).resolve().glob('*.json')): | |
fn = Path(save_dir) / 'labels' / json_file.stem.replace('instances_', '') # folder name | |
fn.mkdir(parents=True, exist_ok=True) | |
with open(json_file) as f: | |
data = json.load(f) | |
# Create image dict | |
images = {'%g' % x['id']: x for x in data['images']} | |
# Create image-annotations dict | |
imgToAnns = defaultdict(list) | |
for ann in data['annotations']: | |
imgToAnns[ann['image_id']].append(ann) | |
# Write labels file | |
for img_id, anns in tqdm(imgToAnns.items(), desc=f'Annotations {json_file}'): | |
img = images['%g' % img_id] | |
h, w, f = img['height'], img['width'], img['file_name'] | |
bboxes = [] | |
segments = [] | |
keypoints = [] | |
for ann in anns: | |
if ann['iscrowd']: | |
continue | |
# The COCO box format is [top left x, top left y, width, height] | |
box = np.array(ann['bbox'], dtype=np.float64) | |
box[:2] += box[2:] / 2 # xy top-left corner to center | |
box[[0, 2]] /= w # normalize x | |
box[[1, 3]] /= h # normalize y | |
if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0 | |
continue | |
cls = coco80[ann['category_id'] - 1] if cls91to80 else ann['category_id'] - 1 # class | |
box = [cls] + box.tolist() | |
if box not in bboxes: | |
bboxes.append(box) | |
if use_segments and ann.get('segmentation') is not None: | |
if len(ann['segmentation']) == 0: | |
segments.append([]) | |
continue | |
if isinstance(ann['segmentation'], dict): | |
ann['segmentation'] = rle2polygon(ann['segmentation']) | |
if len(ann['segmentation']) > 1: | |
s = merge_multi_segment(ann['segmentation']) | |
s = (np.concatenate(s, axis=0) / np.array([w, h])).reshape(-1).tolist() | |
else: | |
s = [j for i in ann['segmentation'] for j in i] # all segments concatenated | |
s = (np.array(s).reshape(-1, 2) / np.array([w, h])).reshape(-1).tolist() | |
s = [cls] + s | |
if s not in segments: | |
segments.append(s) | |
if use_keypoints and ann.get('keypoints') is not None: | |
k = (np.array(ann['keypoints']).reshape(-1, 3) / np.array([w, h, 1])).reshape(-1).tolist() | |
k = box + k | |
keypoints.append(k) | |
# Write | |
with open((fn / f).with_suffix('.txt'), 'a') as file: | |
for i in range(len(bboxes)): | |
if use_keypoints: | |
line = *(keypoints[i]), # cls, box, keypoints | |
else: | |
line = *(segments[i] | |
if use_segments and len(segments[i]) > 0 else bboxes[i]), # cls, box or segments | |
file.write(('%g ' * len(line)).rstrip() % line + '\n') | |
def rle2polygon(segmentation): | |
""" | |
Convert Run-Length Encoding (RLE) mask to polygon coordinates. | |
Args: | |
segmentation (dict, list): RLE mask representation of the object segmentation. | |
Returns: | |
(list): A list of lists representing the polygon coordinates for each contour. | |
Note: | |
Requires the 'pycocotools' package to be installed. | |
""" | |
check_requirements('pycocotools') | |
from pycocotools import mask | |
m = mask.decode(segmentation) | |
m[m > 0] = 255 | |
contours, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS) | |
polygons = [] | |
for contour in contours: | |
epsilon = 0.001 * cv2.arcLength(contour, True) | |
contour_approx = cv2.approxPolyDP(contour, epsilon, True) | |
polygon = contour_approx.flatten().tolist() | |
polygons.append(polygon) | |
return polygons | |
def min_index(arr1, arr2): | |
""" | |
Find a pair of indexes with the shortest distance between two arrays of 2D points. | |
Args: | |
arr1 (np.array): A NumPy array of shape (N, 2) representing N 2D points. | |
arr2 (np.array): A NumPy array of shape (M, 2) representing M 2D points. | |
Returns: | |
(tuple): A tuple containing the indexes of the points with the shortest distance in arr1 and arr2 respectively. | |
""" | |
dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1) | |
return np.unravel_index(np.argmin(dis, axis=None), dis.shape) | |
def merge_multi_segment(segments): | |
""" | |
Merge multiple segments into one list by connecting the coordinates with the minimum distance between each segment. | |
This function connects these coordinates with a thin line to merge all segments into one. | |
Args: | |
segments (List[List]): Original segmentations in COCO's JSON file. | |
Each element is a list of coordinates, like [segmentation1, segmentation2,...]. | |
Returns: | |
s (List[np.ndarray]): A list of connected segments represented as NumPy arrays. | |
""" | |
s = [] | |
segments = [np.array(i).reshape(-1, 2) for i in segments] | |
idx_list = [[] for _ in range(len(segments))] | |
# record the indexes with min distance between each segment | |
for i in range(1, len(segments)): | |
idx1, idx2 = min_index(segments[i - 1], segments[i]) | |
idx_list[i - 1].append(idx1) | |
idx_list[i].append(idx2) | |
# use two round to connect all the segments | |
for k in range(2): | |
# forward connection | |
if k == 0: | |
for i, idx in enumerate(idx_list): | |
# middle segments have two indexes | |
# reverse the index of middle segments | |
if len(idx) == 2 and idx[0] > idx[1]: | |
idx = idx[::-1] | |
segments[i] = segments[i][::-1, :] | |
segments[i] = np.roll(segments[i], -idx[0], axis=0) | |
segments[i] = np.concatenate([segments[i], segments[i][:1]]) | |
# deal with the first segment and the last one | |
if i in [0, len(idx_list) - 1]: | |
s.append(segments[i]) | |
else: | |
idx = [0, idx[1] - idx[0]] | |
s.append(segments[i][idx[0]:idx[1] + 1]) | |
else: | |
for i in range(len(idx_list) - 1, -1, -1): | |
if i not in [0, len(idx_list) - 1]: | |
idx = idx_list[i] | |
nidx = abs(idx[1] - idx[0]) | |
s.append(segments[i][nidx:]) | |
return s | |
def delete_dsstore(path='../datasets'): | |
"""Delete Apple .DS_Store files in the specified directory and its subdirectories.""" | |
from pathlib import Path | |
files = list(Path(path).rglob('.DS_store')) | |
print(files) | |
for f in files: | |
f.unlink() | |
if __name__ == '__main__': | |
source = 'COCO' | |
if source == 'COCO': | |
convert_coco( | |
'../datasets/coco/annotations', # directory with *.json | |
use_segments=False, | |
use_keypoints=True, | |
cls91to80=False) | |