Spaces:
Sleeping
Sleeping
# Ultralytics YOLO ๐, AGPL-3.0 license | |
import re | |
import matplotlib.image as mpimg | |
import matplotlib.pyplot as plt | |
from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING | |
from ultralytics.yolo.utils.torch_utils import model_info_for_loggers | |
try: | |
import clearml | |
from clearml import Task | |
from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO | |
from clearml.binding.matplotlib_bind import PatchedMatplotlib | |
assert hasattr(clearml, '__version__') # verify package is not directory | |
assert not TESTS_RUNNING # do not log pytest | |
except (ImportError, AssertionError): | |
clearml = None | |
def _log_debug_samples(files, title='Debug Samples') -> None: | |
""" | |
Log files (images) as debug samples in the ClearML task. | |
Args: | |
files (list): A list of file paths in PosixPath format. | |
title (str): A title that groups together images with the same values. | |
""" | |
task = Task.current_task() | |
if task: | |
for f in files: | |
if f.exists(): | |
it = re.search(r'_batch(\d+)', f.name) | |
iteration = int(it.groups()[0]) if it else 0 | |
task.get_logger().report_image(title=title, | |
series=f.name.replace(it.group(), ''), | |
local_path=str(f), | |
iteration=iteration) | |
def _log_plot(title, plot_path) -> None: | |
""" | |
Log an image as a plot in the plot section of ClearML. | |
Args: | |
title (str): The title of the plot. | |
plot_path (str): The path to the saved image file. | |
""" | |
img = mpimg.imread(plot_path) | |
fig = plt.figure() | |
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect='auto', xticks=[], yticks=[]) # no ticks | |
ax.imshow(img) | |
Task.current_task().get_logger().report_matplotlib_figure(title=title, | |
series='', | |
figure=fig, | |
report_interactive=False) | |
def on_pretrain_routine_start(trainer): | |
"""Runs at start of pretraining routine; initializes and connects/ logs task to ClearML.""" | |
try: | |
task = Task.current_task() | |
if task: | |
# Make sure the automatic pytorch and matplotlib bindings are disabled! | |
# We are logging these plots and model files manually in the integration | |
PatchPyTorchModelIO.update_current_task(None) | |
PatchedMatplotlib.update_current_task(None) | |
else: | |
task = Task.init(project_name=trainer.args.project or 'YOLOv8', | |
task_name=trainer.args.name, | |
tags=['YOLOv8'], | |
output_uri=True, | |
reuse_last_task_id=False, | |
auto_connect_frameworks={ | |
'pytorch': False, | |
'matplotlib': False}) | |
LOGGER.warning('ClearML Initialized a new task. If you want to run remotely, ' | |
'please add clearml-init and connect your arguments before initializing YOLO.') | |
task.connect(vars(trainer.args), name='General') | |
except Exception as e: | |
LOGGER.warning(f'WARNING โ ๏ธ ClearML installed but not initialized correctly, not logging this run. {e}') | |
def on_train_epoch_end(trainer): | |
task = Task.current_task() | |
if task: | |
"""Logs debug samples for the first epoch of YOLO training.""" | |
if trainer.epoch == 1: | |
_log_debug_samples(sorted(trainer.save_dir.glob('train_batch*.jpg')), 'Mosaic') | |
"""Report the current training progress.""" | |
for k, v in trainer.validator.metrics.results_dict.items(): | |
task.get_logger().report_scalar('train', k, v, iteration=trainer.epoch) | |
def on_fit_epoch_end(trainer): | |
"""Reports model information to logger at the end of an epoch.""" | |
task = Task.current_task() | |
if task: | |
# You should have access to the validation bboxes under jdict | |
task.get_logger().report_scalar(title='Epoch Time', | |
series='Epoch Time', | |
value=trainer.epoch_time, | |
iteration=trainer.epoch) | |
if trainer.epoch == 0: | |
for k, v in model_info_for_loggers(trainer).items(): | |
task.get_logger().report_single_value(k, v) | |
def on_val_end(validator): | |
"""Logs validation results including labels and predictions.""" | |
if Task.current_task(): | |
# Log val_labels and val_pred | |
_log_debug_samples(sorted(validator.save_dir.glob('val*.jpg')), 'Validation') | |
def on_train_end(trainer): | |
"""Logs final model and its name on training completion.""" | |
task = Task.current_task() | |
if task: | |
# Log final results, CM matrix + PR plots | |
files = [ | |
'results.png', 'confusion_matrix.png', 'confusion_matrix_normalized.png', | |
*(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] | |
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter | |
for f in files: | |
_log_plot(title=f.stem, plot_path=f) | |
# Report final metrics | |
for k, v in trainer.validator.metrics.results_dict.items(): | |
task.get_logger().report_single_value(k, v) | |
# Log the final model | |
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False) | |
callbacks = { | |
'on_pretrain_routine_start': on_pretrain_routine_start, | |
'on_train_epoch_end': on_train_epoch_end, | |
'on_fit_epoch_end': on_fit_epoch_end, | |
'on_val_end': on_val_end, | |
'on_train_end': on_train_end} if clearml else {} | |