Spaces:
Starting
on
T4
Starting
on
T4
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import contextlib | |
import math | |
from pathlib import Path | |
import cv2 | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
from PIL import Image, ImageDraw, ImageFont | |
from PIL import __version__ as pil_version | |
from scipy.ndimage import gaussian_filter1d | |
from ultralytics.yolo.utils import LOGGER, TryExcept, plt_settings, threaded | |
from .checks import check_font, check_version, is_ascii | |
from .files import increment_path | |
from .ops import clip_boxes, scale_image, xywh2xyxy, xyxy2xywh | |
class Colors: | |
# Ultralytics color palette https://ultralytics.com/ | |
def __init__(self): | |
"""Initialize colors as hex = matplotlib.colors.TABLEAU_COLORS.values().""" | |
hexs = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', | |
'2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') | |
self.palette = [self.hex2rgb(f'#{c}') for c in hexs] | |
self.n = len(self.palette) | |
self.pose_palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], [230, 230, 0], [255, 153, 255], | |
[153, 204, 255], [255, 102, 255], [255, 51, 255], [102, 178, 255], [51, 153, 255], | |
[255, 153, 153], [255, 102, 102], [255, 51, 51], [153, 255, 153], [102, 255, 102], | |
[51, 255, 51], [0, 255, 0], [0, 0, 255], [255, 0, 0], [255, 255, 255]], | |
dtype=np.uint8) | |
def __call__(self, i, bgr=False): | |
"""Converts hex color codes to rgb values.""" | |
c = self.palette[int(i) % self.n] | |
return (c[2], c[1], c[0]) if bgr else c | |
def hex2rgb(h): # rgb order (PIL) | |
return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) | |
colors = Colors() # create instance for 'from utils.plots import colors' | |
class Annotator: | |
# YOLOv8 Annotator for train/val mosaics and jpgs and detect/hub inference annotations | |
def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): | |
"""Initialize the Annotator class with image and line width along with color palette for keypoints and limbs.""" | |
assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' | |
non_ascii = not is_ascii(example) # non-latin labels, i.e. asian, arabic, cyrillic | |
self.pil = pil or non_ascii | |
if self.pil: # use PIL | |
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) | |
self.draw = ImageDraw.Draw(self.im) | |
try: | |
font = check_font('Arial.Unicode.ttf' if non_ascii else font) | |
size = font_size or max(round(sum(self.im.size) / 2 * 0.035), 12) | |
self.font = ImageFont.truetype(str(font), size) | |
except Exception: | |
self.font = ImageFont.load_default() | |
# Deprecation fix for w, h = getsize(string) -> _, _, w, h = getbox(string) | |
if check_version(pil_version, '9.2.0'): | |
self.font.getsize = lambda x: self.font.getbbox(x)[2:4] # text width, height | |
else: # use cv2 | |
self.im = im | |
self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width | |
# Pose | |
self.skeleton = [[16, 14], [14, 12], [17, 15], [15, 13], [12, 13], [6, 12], [7, 13], [6, 7], [6, 8], [7, 9], | |
[8, 10], [9, 11], [2, 3], [1, 2], [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]] | |
self.limb_color = colors.pose_palette[[9, 9, 9, 9, 7, 7, 7, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16]] | |
self.kpt_color = colors.pose_palette[[16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 9, 9, 9, 9, 9, 9]] | |
def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): | |
"""Add one xyxy box to image with label.""" | |
if isinstance(box, torch.Tensor): | |
box = box.tolist() | |
if self.pil or not is_ascii(label): | |
self.draw.rectangle(box, width=self.lw, outline=color) # box | |
if label: | |
w, h = self.font.getsize(label) # text width, height | |
outside = box[1] - h >= 0 # label fits outside box | |
self.draw.rectangle( | |
(box[0], box[1] - h if outside else box[1], box[0] + w + 1, | |
box[1] + 1 if outside else box[1] + h + 1), | |
fill=color, | |
) | |
# self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0 | |
self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font) | |
else: # cv2 | |
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) | |
cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) | |
if label: | |
tf = max(self.lw - 1, 1) # font thickness | |
w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height | |
outside = p1[1] - h >= 3 | |
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 | |
cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled | |
cv2.putText(self.im, | |
label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), | |
0, | |
self.lw / 3, | |
txt_color, | |
thickness=tf, | |
lineType=cv2.LINE_AA) | |
def masks(self, masks, colors, im_gpu, alpha=0.5, retina_masks=False): | |
"""Plot masks at once. | |
Args: | |
masks (tensor): predicted masks on cuda, shape: [n, h, w] | |
colors (List[List[Int]]): colors for predicted masks, [[r, g, b] * n] | |
im_gpu (tensor): img is in cuda, shape: [3, h, w], range: [0, 1] | |
alpha (float): mask transparency: 0.0 fully transparent, 1.0 opaque | |
""" | |
if self.pil: | |
# Convert to numpy first | |
self.im = np.asarray(self.im).copy() | |
if len(masks) == 0: | |
self.im[:] = im_gpu.permute(1, 2, 0).contiguous().cpu().numpy() * 255 | |
if im_gpu.device != masks.device: | |
im_gpu = im_gpu.to(masks.device) | |
colors = torch.tensor(colors, device=masks.device, dtype=torch.float32) / 255.0 # shape(n,3) | |
colors = colors[:, None, None] # shape(n,1,1,3) | |
masks = masks.unsqueeze(3) # shape(n,h,w,1) | |
masks_color = masks * (colors * alpha) # shape(n,h,w,3) | |
inv_alph_masks = (1 - masks * alpha).cumprod(0) # shape(n,h,w,1) | |
mcs = masks_color.max(dim=0).values # shape(n,h,w,3) | |
im_gpu = im_gpu.flip(dims=[0]) # flip channel | |
im_gpu = im_gpu.permute(1, 2, 0).contiguous() # shape(h,w,3) | |
im_gpu = im_gpu * inv_alph_masks[-1] + mcs | |
im_mask = (im_gpu * 255) | |
im_mask_np = im_mask.byte().cpu().numpy() | |
self.im[:] = im_mask_np if retina_masks else scale_image(im_mask_np, self.im.shape) | |
if self.pil: | |
# Convert im back to PIL and update draw | |
self.fromarray(self.im) | |
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True): | |
"""Plot keypoints on the image. | |
Args: | |
kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence). | |
shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width. | |
radius (int, optional): Radius of the drawn keypoints. Default is 5. | |
kpt_line (bool, optional): If True, the function will draw lines connecting keypoints | |
for human pose. Default is True. | |
Note: `kpt_line=True` currently only supports human pose plotting. | |
""" | |
if self.pil: | |
# Convert to numpy first | |
self.im = np.asarray(self.im).copy() | |
nkpt, ndim = kpts.shape | |
is_pose = nkpt == 17 and ndim == 3 | |
kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting | |
for i, k in enumerate(kpts): | |
color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i) | |
x_coord, y_coord = k[0], k[1] | |
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0: | |
if len(k) == 3: | |
conf = k[2] | |
if conf < 0.5: | |
continue | |
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA) | |
if kpt_line: | |
ndim = kpts.shape[-1] | |
for i, sk in enumerate(self.skeleton): | |
pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1])) | |
pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1])) | |
if ndim == 3: | |
conf1 = kpts[(sk[0] - 1), 2] | |
conf2 = kpts[(sk[1] - 1), 2] | |
if conf1 < 0.5 or conf2 < 0.5: | |
continue | |
if pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0: | |
continue | |
if pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0: | |
continue | |
cv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA) | |
if self.pil: | |
# Convert im back to PIL and update draw | |
self.fromarray(self.im) | |
def rectangle(self, xy, fill=None, outline=None, width=1): | |
"""Add rectangle to image (PIL-only).""" | |
self.draw.rectangle(xy, fill, outline, width) | |
def text(self, xy, text, txt_color=(255, 255, 255), anchor='top', box_style=False): | |
"""Adds text to an image using PIL or cv2.""" | |
if anchor == 'bottom': # start y from font bottom | |
w, h = self.font.getsize(text) # text width, height | |
xy[1] += 1 - h | |
if self.pil: | |
if box_style: | |
w, h = self.font.getsize(text) | |
self.draw.rectangle((xy[0], xy[1], xy[0] + w + 1, xy[1] + h + 1), fill=txt_color) | |
# Using `txt_color` for background and draw fg with white color | |
txt_color = (255, 255, 255) | |
self.draw.text(xy, text, fill=txt_color, font=self.font) | |
else: | |
if box_style: | |
tf = max(self.lw - 1, 1) # font thickness | |
w, h = cv2.getTextSize(text, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height | |
outside = xy[1] - h >= 3 | |
p2 = xy[0] + w, xy[1] - h - 3 if outside else xy[1] + h + 3 | |
cv2.rectangle(self.im, xy, p2, txt_color, -1, cv2.LINE_AA) # filled | |
# Using `txt_color` for background and draw fg with white color | |
txt_color = (255, 255, 255) | |
tf = max(self.lw - 1, 1) # font thickness | |
cv2.putText(self.im, text, xy, 0, self.lw / 3, txt_color, thickness=tf, lineType=cv2.LINE_AA) | |
def fromarray(self, im): | |
"""Update self.im from a numpy array.""" | |
self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) | |
self.draw = ImageDraw.Draw(self.im) | |
def result(self): | |
"""Return annotated image as array.""" | |
return np.asarray(self.im) | |
# known issue https://github.com/ultralytics/yolov5/issues/5395 | |
def plot_labels(boxes, cls, names=(), save_dir=Path(''), on_plot=None): | |
"""Save and plot image with no axis or spines.""" | |
import pandas as pd | |
import seaborn as sn | |
# Plot dataset labels | |
LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") | |
b = boxes.transpose() # classes, boxes | |
nc = int(cls.max() + 1) # number of classes | |
x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) | |
# Seaborn correlogram | |
sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) | |
plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) | |
plt.close() | |
# Matplotlib labels | |
ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() | |
y = ax[0].hist(cls, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) | |
with contextlib.suppress(Exception): # color histogram bars by class | |
[y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195 | |
ax[0].set_ylabel('instances') | |
if 0 < len(names) < 30: | |
ax[0].set_xticks(range(len(names))) | |
ax[0].set_xticklabels(list(names.values()), rotation=90, fontsize=10) | |
else: | |
ax[0].set_xlabel('classes') | |
sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) | |
sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) | |
# Rectangles | |
boxes[:, 0:2] = 0.5 # center | |
boxes = xywh2xyxy(boxes) * 1000 | |
img = Image.fromarray(np.ones((1000, 1000, 3), dtype=np.uint8) * 255) | |
for cls, box in zip(cls[:500], boxes[:500]): | |
ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot | |
ax[1].imshow(img) | |
ax[1].axis('off') | |
for a in [0, 1, 2, 3]: | |
for s in ['top', 'right', 'left', 'bottom']: | |
ax[a].spines[s].set_visible(False) | |
fname = save_dir / 'labels.jpg' | |
plt.savefig(fname, dpi=200) | |
plt.close() | |
if on_plot: | |
on_plot(fname) | |
def save_one_box(xyxy, im, file=Path('im.jpg'), gain=1.02, pad=10, square=False, BGR=False, save=True): | |
"""Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop.""" | |
b = xyxy2xywh(xyxy.view(-1, 4)) # boxes | |
if square: | |
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square | |
b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad | |
xyxy = xywh2xyxy(b).long() | |
clip_boxes(xyxy, im.shape) | |
crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] | |
if save: | |
file.parent.mkdir(parents=True, exist_ok=True) # make directory | |
f = str(increment_path(file).with_suffix('.jpg')) | |
# cv2.imwrite(f, crop) # save BGR, https://github.com/ultralytics/yolov5/issues/7007 chroma subsampling issue | |
Image.fromarray(crop[..., ::-1]).save(f, quality=95, subsampling=0) # save RGB | |
return crop | |
def plot_images(images, | |
batch_idx, | |
cls, | |
bboxes=np.zeros(0, dtype=np.float32), | |
masks=np.zeros(0, dtype=np.uint8), | |
kpts=np.zeros((0, 51), dtype=np.float32), | |
paths=None, | |
fname='images.jpg', | |
names=None, | |
on_plot=None): | |
# Plot image grid with labels | |
if isinstance(images, torch.Tensor): | |
images = images.cpu().float().numpy() | |
if isinstance(cls, torch.Tensor): | |
cls = cls.cpu().numpy() | |
if isinstance(bboxes, torch.Tensor): | |
bboxes = bboxes.cpu().numpy() | |
if isinstance(masks, torch.Tensor): | |
masks = masks.cpu().numpy().astype(int) | |
if isinstance(kpts, torch.Tensor): | |
kpts = kpts.cpu().numpy() | |
if isinstance(batch_idx, torch.Tensor): | |
batch_idx = batch_idx.cpu().numpy() | |
max_size = 1920 # max image size | |
max_subplots = 16 # max image subplots, i.e. 4x4 | |
bs, _, h, w = images.shape # batch size, _, height, width | |
bs = min(bs, max_subplots) # limit plot images | |
ns = np.ceil(bs ** 0.5) # number of subplots (square) | |
if np.max(images[0]) <= 1: | |
images *= 255 # de-normalise (optional) | |
# Build Image | |
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init | |
for i, im in enumerate(images): | |
if i == max_subplots: # if last batch has fewer images than we expect | |
break | |
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin | |
im = im.transpose(1, 2, 0) | |
mosaic[y:y + h, x:x + w, :] = im | |
# Resize (optional) | |
scale = max_size / ns / max(h, w) | |
if scale < 1: | |
h = math.ceil(scale * h) | |
w = math.ceil(scale * w) | |
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) | |
# Annotate | |
fs = int((h + w) * ns * 0.01) # font size | |
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) | |
for i in range(i + 1): | |
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin | |
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders | |
if paths: | |
annotator.text((x + 5, y + 5), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames | |
if len(cls) > 0: | |
idx = batch_idx == i | |
classes = cls[idx].astype('int') | |
if len(bboxes): | |
boxes = xywh2xyxy(bboxes[idx, :4]).T | |
labels = bboxes.shape[1] == 4 # labels if no conf column | |
conf = None if labels else bboxes[idx, 4] # check for confidence presence (label vs pred) | |
if boxes.shape[1]: | |
if boxes.max() <= 1.01: # if normalized with tolerance 0.01 | |
boxes[[0, 2]] *= w # scale to pixels | |
boxes[[1, 3]] *= h | |
elif scale < 1: # absolute coords need scale if image scales | |
boxes *= scale | |
boxes[[0, 2]] += x | |
boxes[[1, 3]] += y | |
for j, box in enumerate(boxes.T.tolist()): | |
c = classes[j] | |
color = colors(c) | |
c = names.get(c, c) if names else c | |
if labels or conf[j] > 0.25: # 0.25 conf thresh | |
label = f'{c}' if labels else f'{c} {conf[j]:.1f}' | |
annotator.box_label(box, label, color=color) | |
elif len(classes): | |
for c in classes: | |
color = colors(c) | |
c = names.get(c, c) if names else c | |
annotator.text((x, y), f'{c}', txt_color=color, box_style=True) | |
# Plot keypoints | |
if len(kpts): | |
kpts_ = kpts[idx].copy() | |
if len(kpts_): | |
if kpts_[..., 0].max() <= 1.01 or kpts_[..., 1].max() <= 1.01: # if normalized with tolerance .01 | |
kpts_[..., 0] *= w # scale to pixels | |
kpts_[..., 1] *= h | |
elif scale < 1: # absolute coords need scale if image scales | |
kpts_ *= scale | |
kpts_[..., 0] += x | |
kpts_[..., 1] += y | |
for j in range(len(kpts_)): | |
if labels or conf[j] > 0.25: # 0.25 conf thresh | |
annotator.kpts(kpts_[j]) | |
# Plot masks | |
if len(masks): | |
if idx.shape[0] == masks.shape[0]: # overlap_masks=False | |
image_masks = masks[idx] | |
else: # overlap_masks=True | |
image_masks = masks[[i]] # (1, 640, 640) | |
nl = idx.sum() | |
index = np.arange(nl).reshape((nl, 1, 1)) + 1 | |
image_masks = np.repeat(image_masks, nl, axis=0) | |
image_masks = np.where(image_masks == index, 1.0, 0.0) | |
im = np.asarray(annotator.im).copy() | |
for j, box in enumerate(boxes.T.tolist()): | |
if labels or conf[j] > 0.25: # 0.25 conf thresh | |
color = colors(classes[j]) | |
mh, mw = image_masks[j].shape | |
if mh != h or mw != w: | |
mask = image_masks[j].astype(np.uint8) | |
mask = cv2.resize(mask, (w, h)) | |
mask = mask.astype(bool) | |
else: | |
mask = image_masks[j].astype(bool) | |
with contextlib.suppress(Exception): | |
im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6 | |
annotator.fromarray(im) | |
annotator.im.save(fname) # save | |
if on_plot: | |
on_plot(fname) | |
def plot_results(file='path/to/results.csv', dir='', segment=False, pose=False, classify=False, on_plot=None): | |
"""Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv').""" | |
import pandas as pd | |
save_dir = Path(file).parent if file else Path(dir) | |
if classify: | |
fig, ax = plt.subplots(2, 2, figsize=(6, 6), tight_layout=True) | |
index = [1, 4, 2, 3] | |
elif segment: | |
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True) | |
index = [1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12] | |
elif pose: | |
fig, ax = plt.subplots(2, 9, figsize=(21, 6), tight_layout=True) | |
index = [1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16, 17, 18, 8, 9, 12, 13] | |
else: | |
fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) | |
index = [1, 2, 3, 4, 5, 8, 9, 10, 6, 7] | |
ax = ax.ravel() | |
files = list(save_dir.glob('results*.csv')) | |
assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' | |
for f in files: | |
try: | |
data = pd.read_csv(f) | |
s = [x.strip() for x in data.columns] | |
x = data.values[:, 0] | |
for i, j in enumerate(index): | |
y = data.values[:, j].astype('float') | |
# y[y == 0] = np.nan # don't show zero values | |
ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) # actual results | |
ax[i].plot(x, gaussian_filter1d(y, sigma=3), ':', label='smooth', linewidth=2) # smoothing line | |
ax[i].set_title(s[j], fontsize=12) | |
# if j in [8, 9, 10]: # share train and val loss y axes | |
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) | |
except Exception as e: | |
LOGGER.warning(f'WARNING: Plotting error for {f}: {e}') | |
ax[1].legend() | |
fname = save_dir / 'results.png' | |
fig.savefig(fname, dpi=200) | |
plt.close() | |
if on_plot: | |
on_plot(fname) | |
def output_to_target(output, max_det=300): | |
"""Convert model output to target format [batch_id, class_id, x, y, w, h, conf] for plotting.""" | |
targets = [] | |
for i, o in enumerate(output): | |
box, conf, cls = o[:max_det, :6].cpu().split((4, 1, 1), 1) | |
j = torch.full((conf.shape[0], 1), i) | |
targets.append(torch.cat((j, cls, xyxy2xywh(box), conf), 1)) | |
targets = torch.cat(targets, 0).numpy() | |
return targets[:, 0], targets[:, 1], targets[:, 2:] | |
def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')): | |
""" | |
Visualize feature maps of a given model module during inference. | |
Args: | |
x (torch.Tensor): Features to be visualized. | |
module_type (str): Module type. | |
stage (int): Module stage within the model. | |
n (int, optional): Maximum number of feature maps to plot. Defaults to 32. | |
save_dir (Path, optional): Directory to save results. Defaults to Path('runs/detect/exp'). | |
""" | |
for m in ['Detect', 'Pose', 'Segment']: | |
if m in module_type: | |
return | |
batch, channels, height, width = x.shape # batch, channels, height, width | |
if height > 1 and width > 1: | |
f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename | |
blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels | |
n = min(n, channels) # number of plots | |
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols | |
ax = ax.ravel() | |
plt.subplots_adjust(wspace=0.05, hspace=0.05) | |
for i in range(n): | |
ax[i].imshow(blocks[i].squeeze()) # cmap='gray' | |
ax[i].axis('off') | |
LOGGER.info(f'Saving {f}... ({n}/{channels})') | |
plt.savefig(f, dpi=300, bbox_inches='tight') | |
plt.close() | |
np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save | |