Spaces:
Running
on
T4
Running
on
T4
# Ultralytics YOLO π, AGPL-3.0 license | |
from ultralytics.yolo.engine.results import Results | |
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops | |
from ultralytics.yolo.v8.detect.predict import DetectionPredictor | |
class PosePredictor(DetectionPredictor): | |
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): | |
super().__init__(cfg, overrides, _callbacks) | |
self.args.task = 'pose' | |
def postprocess(self, preds, img, orig_imgs): | |
"""Return detection results for a given input image or list of images.""" | |
preds = ops.non_max_suppression(preds, | |
self.args.conf, | |
self.args.iou, | |
agnostic=self.args.agnostic_nms, | |
max_det=self.args.max_det, | |
classes=self.args.classes, | |
nc=len(self.model.names)) | |
results = [] | |
for i, pred in enumerate(preds): | |
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs | |
shape = orig_img.shape | |
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round() | |
pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:] | |
pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape) | |
path = self.batch[0] | |
img_path = path[i] if isinstance(path, list) else path | |
results.append( | |
Results(orig_img=orig_img, | |
path=img_path, | |
names=self.model.names, | |
boxes=pred[:, :6], | |
keypoints=pred_kpts)) | |
return results | |
def predict(cfg=DEFAULT_CFG, use_python=False): | |
"""Runs YOLO to predict objects in an image or video.""" | |
model = cfg.model or 'yolov8n-pose.pt' | |
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ | |
else 'https://ultralytics.com/images/bus.jpg' | |
args = dict(model=model, source=source) | |
if use_python: | |
from ultralytics import YOLO | |
YOLO(model)(**args) | |
else: | |
predictor = PosePredictor(overrides=args) | |
predictor.predict_cli() | |
if __name__ == '__main__': | |
predict() | |