Spaces:
Running
on
T4
Running
on
T4
AAAAAAyq
commited on
Commit
•
0eb155c
1
Parent(s):
bd6726a
Fix the queue problem to improve stability
Browse files- app.py +40 -23
- app_copy.py → app_debug.py +6 -8
app.py
CHANGED
@@ -6,7 +6,7 @@ import cv2
|
|
6 |
import torch
|
7 |
# import queue
|
8 |
# import threading
|
9 |
-
|
10 |
|
11 |
|
12 |
model = YOLO('checkpoints/FastSAM.pt') # load a custom model
|
@@ -18,8 +18,9 @@ def fast_process(annotations, image, high_quality, device):
|
|
18 |
|
19 |
original_h = image.height
|
20 |
original_w = image.width
|
21 |
-
|
22 |
-
plt.
|
|
|
23 |
if high_quality == True:
|
24 |
if isinstance(annotations[0],torch.Tensor):
|
25 |
annotations = np.array(annotations.cpu())
|
@@ -28,7 +29,7 @@ def fast_process(annotations, image, high_quality, device):
|
|
28 |
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
29 |
if device == 'cpu':
|
30 |
annotations = np.array(annotations)
|
31 |
-
fast_show_mask(annotations,
|
32 |
plt.gca(),
|
33 |
bbox=None,
|
34 |
points=None,
|
@@ -39,13 +40,14 @@ def fast_process(annotations, image, high_quality, device):
|
|
39 |
else:
|
40 |
if isinstance(annotations[0],np.ndarray):
|
41 |
annotations = torch.from_numpy(annotations)
|
42 |
-
fast_show_mask_gpu(annotations,
|
43 |
plt.gca(),
|
44 |
bbox=None,
|
45 |
points=None,
|
46 |
pointlabel=None)
|
47 |
if isinstance(annotations, torch.Tensor):
|
48 |
annotations = annotations.cpu().numpy()
|
|
|
49 |
if high_quality == True:
|
50 |
contour_all = []
|
51 |
temp = np.zeros((original_h, original_w,1))
|
@@ -58,12 +60,17 @@ def fast_process(annotations, image, high_quality, device):
|
|
58 |
contour_all.append(contour)
|
59 |
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
60 |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
|
61 |
-
contour_mask = temp /
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
# CPU post process
|
@@ -85,12 +92,12 @@ def fast_show_mask(annotation, ax, bbox=None,
|
|
85 |
visual = np.concatenate([color,transparency],axis=-1)
|
86 |
mask_image = np.expand_dims(annotation,-1) * visual
|
87 |
|
88 |
-
|
89 |
|
90 |
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
91 |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
92 |
# 使用向量化索引更新show的值
|
93 |
-
|
94 |
if bbox is not None:
|
95 |
x1, y1, x2, y2 = bbox
|
96 |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
@@ -100,8 +107,10 @@ def fast_show_mask(annotation, ax, bbox=None,
|
|
100 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
101 |
|
102 |
if retinamask==False:
|
103 |
-
|
104 |
-
ax.imshow(
|
|
|
|
|
105 |
|
106 |
|
107 |
def fast_show_mask_gpu(annotation, ax,
|
@@ -120,12 +129,12 @@ def fast_show_mask_gpu(annotation, ax,
|
|
120 |
visual = torch.cat([color,transparency],dim=-1)
|
121 |
mask_image = torch.unsqueeze(annotation,-1) * visual
|
122 |
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
|
123 |
-
|
124 |
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
125 |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
126 |
# 使用向量化索引更新show的值
|
127 |
-
|
128 |
-
|
129 |
if bbox is not None:
|
130 |
x1, y1, x2, y2 = bbox
|
131 |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
@@ -133,9 +142,15 @@ def fast_show_mask_gpu(annotation, ax,
|
|
133 |
if points is not None:
|
134 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
135 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
136 |
-
ax.imshow(
|
|
|
|
|
137 |
|
|
|
|
|
138 |
|
|
|
|
|
139 |
|
140 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
141 |
|
@@ -157,12 +172,14 @@ def predict(input, input_size=512, high_visual_quality=False):
|
|
157 |
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
158 |
# pil_image = fast_process(annotations=results[0].masks.data,
|
159 |
# image=input, high_quality=high_quality_visual, device=device)
|
|
|
160 |
app_interface = gr.Interface(fn=predict,
|
161 |
-
inputs=[gr.
|
162 |
gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
|
163 |
-
gr.components.Checkbox(value=
|
164 |
-
outputs=['plot'],
|
165 |
-
|
|
|
166 |
# # ["assets/sa_1309.jpg", 1024]],
|
167 |
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
168 |
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
|
|
|
6 |
import torch
|
7 |
# import queue
|
8 |
# import threading
|
9 |
+
from PIL import Image
|
10 |
|
11 |
|
12 |
model = YOLO('checkpoints/FastSAM.pt') # load a custom model
|
|
|
18 |
|
19 |
original_h = image.height
|
20 |
original_w = image.width
|
21 |
+
image = image.convert('RGBA')
|
22 |
+
# fig = plt.figure(figsize=(10, 10))
|
23 |
+
# plt.imshow(image)
|
24 |
if high_quality == True:
|
25 |
if isinstance(annotations[0],torch.Tensor):
|
26 |
annotations = np.array(annotations.cpu())
|
|
|
29 |
annotations[i] = cv2.morphologyEx(mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8))
|
30 |
if device == 'cpu':
|
31 |
annotations = np.array(annotations)
|
32 |
+
inner_mask = fast_show_mask(annotations,
|
33 |
plt.gca(),
|
34 |
bbox=None,
|
35 |
points=None,
|
|
|
40 |
else:
|
41 |
if isinstance(annotations[0],np.ndarray):
|
42 |
annotations = torch.from_numpy(annotations)
|
43 |
+
inner_mask = fast_show_mask_gpu(annotations,
|
44 |
plt.gca(),
|
45 |
bbox=None,
|
46 |
points=None,
|
47 |
pointlabel=None)
|
48 |
if isinstance(annotations, torch.Tensor):
|
49 |
annotations = annotations.cpu().numpy()
|
50 |
+
|
51 |
if high_quality == True:
|
52 |
contour_all = []
|
53 |
temp = np.zeros((original_h, original_w,1))
|
|
|
60 |
contour_all.append(contour)
|
61 |
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
62 |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
|
63 |
+
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
64 |
+
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
|
65 |
+
image.paste(overlay_contour, (0, 0), overlay_contour)
|
66 |
+
# plt.imshow(contour_mask)
|
67 |
+
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
68 |
+
image.paste(overlay_inner, (0, 0), overlay_inner)
|
69 |
+
|
70 |
+
return image
|
71 |
+
# plt.axis('off')
|
72 |
+
# plt.tight_layout()
|
73 |
+
# return fig
|
74 |
|
75 |
|
76 |
# CPU post process
|
|
|
92 |
visual = np.concatenate([color,transparency],axis=-1)
|
93 |
mask_image = np.expand_dims(annotation,-1) * visual
|
94 |
|
95 |
+
mask = np.zeros((height,weight,4))
|
96 |
|
97 |
h_indices, w_indices = np.meshgrid(np.arange(height), np.arange(weight), indexing='ij')
|
98 |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
99 |
# 使用向量化索引更新show的值
|
100 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
101 |
if bbox is not None:
|
102 |
x1, y1, x2, y2 = bbox
|
103 |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
|
|
107 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
108 |
|
109 |
if retinamask==False:
|
110 |
+
mask = cv2.resize(mask, (target_width, target_height), interpolation=cv2.INTER_NEAREST)
|
111 |
+
# ax.imshow(mask)
|
112 |
+
|
113 |
+
return mask
|
114 |
|
115 |
|
116 |
def fast_show_mask_gpu(annotation, ax,
|
|
|
129 |
visual = torch.cat([color,transparency],dim=-1)
|
130 |
mask_image = torch.unsqueeze(annotation,-1) * visual
|
131 |
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
|
132 |
+
mask = torch.zeros((height,weight,4)).to(annotation.device)
|
133 |
h_indices, w_indices = torch.meshgrid(torch.arange(height), torch.arange(weight))
|
134 |
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
|
135 |
# 使用向量化索引更新show的值
|
136 |
+
mask[h_indices, w_indices, :] = mask_image[indices]
|
137 |
+
mask_cpu = mask.cpu().numpy()
|
138 |
if bbox is not None:
|
139 |
x1, y1, x2, y2 = bbox
|
140 |
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
|
|
142 |
if points is not None:
|
143 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==1], [point[1] for i, point in enumerate(points) if pointlabel[i]==1], s=20, c='y')
|
144 |
plt.scatter([point[0] for i, point in enumerate(points) if pointlabel[i]==0], [point[1] for i, point in enumerate(points) if pointlabel[i]==0], s=20, c='m')
|
145 |
+
# ax.imshow(mask_cpu)
|
146 |
+
return mask_cpu
|
147 |
+
|
148 |
|
149 |
+
# # 预测队列
|
150 |
+
# prediction_queue = queue.Queue(maxsize=5)
|
151 |
|
152 |
+
# # 线程锁
|
153 |
+
# lock = threading.Lock()
|
154 |
|
155 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
156 |
|
|
|
172 |
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
|
173 |
# pil_image = fast_process(annotations=results[0].masks.data,
|
174 |
# image=input, high_quality=high_quality_visual, device=device)
|
175 |
+
|
176 |
app_interface = gr.Interface(fn=predict,
|
177 |
+
inputs=[gr.Image(type='pil'),
|
178 |
gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
|
179 |
+
gr.components.Checkbox(value=True, label='high_visual_quality')],
|
180 |
+
# outputs=['plot'],
|
181 |
+
outputs=gr.Image(type='pil'),
|
182 |
+
examples=[["assets/sa_8776.jpg"]],
|
183 |
# # ["assets/sa_1309.jpg", 1024]],
|
184 |
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
185 |
# ["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
|
app_copy.py → app_debug.py
RENAMED
@@ -18,6 +18,7 @@ def fast_process(annotations, image, high_quality, device):
|
|
18 |
|
19 |
original_h = image.height
|
20 |
original_w = image.width
|
|
|
21 |
# fig = plt.figure(figsize=(10, 10))
|
22 |
# plt.imshow(image)
|
23 |
if high_quality == True:
|
@@ -46,6 +47,7 @@ def fast_process(annotations, image, high_quality, device):
|
|
46 |
pointlabel=None)
|
47 |
if isinstance(annotations, torch.Tensor):
|
48 |
annotations = annotations.cpu().numpy()
|
|
|
49 |
if high_quality == True:
|
50 |
contour_all = []
|
51 |
temp = np.zeros((original_h, original_w,1))
|
@@ -59,15 +61,11 @@ def fast_process(annotations, image, high_quality, device):
|
|
59 |
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
60 |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
|
61 |
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
|
|
|
|
62 |
# plt.imshow(contour_mask)
|
63 |
-
image = image.convert('RGBA')
|
64 |
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
65 |
-
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
|
66 |
-
# image = image.convert('RGBA')
|
67 |
-
# image = Image.alpha_composite(image, overlay_inner)
|
68 |
-
# image = Image.alpha_composite(image, overlay_contour)
|
69 |
image.paste(overlay_inner, (0, 0), overlay_inner)
|
70 |
-
image.paste(overlay_contour, (0, 0), overlay_contour)
|
71 |
|
72 |
return image
|
73 |
# plt.axis('off')
|
@@ -176,11 +174,11 @@ def predict(input, input_size=512, high_visual_quality=False):
|
|
176 |
# image=input, high_quality=high_quality_visual, device=device)
|
177 |
|
178 |
app_interface = gr.Interface(fn=predict,
|
179 |
-
inputs=[gr.
|
180 |
gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
|
181 |
gr.components.Checkbox(value=False, label='high_visual_quality')],
|
182 |
# outputs=['plot'],
|
183 |
-
outputs=gr.
|
184 |
examples=[["assets/sa_8776.jpg", 1024, True]],
|
185 |
# # ["assets/sa_1309.jpg", 1024]],
|
186 |
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
|
|
18 |
|
19 |
original_h = image.height
|
20 |
original_w = image.width
|
21 |
+
image = image.convert('RGBA')
|
22 |
# fig = plt.figure(figsize=(10, 10))
|
23 |
# plt.imshow(image)
|
24 |
if high_quality == True:
|
|
|
47 |
pointlabel=None)
|
48 |
if isinstance(annotations, torch.Tensor):
|
49 |
annotations = annotations.cpu().numpy()
|
50 |
+
|
51 |
if high_quality == True:
|
52 |
contour_all = []
|
53 |
temp = np.zeros((original_h, original_w,1))
|
|
|
61 |
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
|
62 |
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
|
63 |
contour_mask = temp / 255 * color.reshape(1, 1, -1)
|
64 |
+
overlay_contour = Image.fromarray((contour_mask * 255).astype(np.uint8), 'RGBA')
|
65 |
+
image.paste(overlay_contour, (0, 0), overlay_contour)
|
66 |
# plt.imshow(contour_mask)
|
|
|
67 |
overlay_inner = Image.fromarray((inner_mask * 255).astype(np.uint8), 'RGBA')
|
|
|
|
|
|
|
|
|
68 |
image.paste(overlay_inner, (0, 0), overlay_inner)
|
|
|
69 |
|
70 |
return image
|
71 |
# plt.axis('off')
|
|
|
174 |
# image=input, high_quality=high_quality_visual, device=device)
|
175 |
|
176 |
app_interface = gr.Interface(fn=predict,
|
177 |
+
inputs=[gr.Image(type='pil'),
|
178 |
gr.components.Slider(minimum=512, maximum=1024, value=1024, step=64, label='input_size'),
|
179 |
gr.components.Checkbox(value=False, label='high_visual_quality')],
|
180 |
# outputs=['plot'],
|
181 |
+
outputs=gr.Image(type='pil'),
|
182 |
examples=[["assets/sa_8776.jpg", 1024, True]],
|
183 |
# # ["assets/sa_1309.jpg", 1024]],
|
184 |
# examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|