AAAAAAyq commited on
Commit
d1be458
1 Parent(s): 1e39555

Update the examples for more clear visualization

Browse files
app.py CHANGED
@@ -157,7 +157,7 @@ def fast_show_mask_gpu(annotation, ax,
157
 
158
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
159
 
160
- def predict(input, input_size=512, high_visual_quality=True):
161
  input_size = int(input_size) # 确保 imgsz 是整数
162
 
163
  # Thanks for the suggestion by hysts in HuggingFace.
 
157
 
158
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
159
 
160
+ def predict(input, input_size=1024, high_visual_quality=True):
161
  input_size = int(input_size) # 确保 imgsz 是整数
162
 
163
  # Thanks for the suggestion by hysts in HuggingFace.
app_debug.py CHANGED
@@ -57,7 +57,7 @@ def fast_process(annotations, image, high_quality, device):
57
  contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
58
  for contour in contours:
59
  contour_all.append(contour)
60
- cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 3)
61
  color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
62
  contour_mask = temp / 255 * color.reshape(1, 1, -1)
63
  # plt.imshow(contour_mask)
@@ -157,7 +157,9 @@ def fast_show_mask_gpu(annotation, ax,
157
 
158
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
159
 
160
- def predict(input, input_size=512, high_visual_quality=True):
 
 
161
  # Thanks for the suggestion by hysts in HuggingFace.
162
  w, h = input.size
163
  scale = input_size / max(w, h)
@@ -165,7 +167,6 @@ def predict(input, input_size=512, high_visual_quality=True):
165
  new_h = int(h * scale)
166
  input = input.resize((new_w, new_h))
167
 
168
- input_size = int(input_size) # 确保 imgsz 是整数
169
  results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
170
  fig = fast_process(annotations=results[0].masks.data,
171
  image=input, high_quality=high_visual_quality, device=device)
 
57
  contours, _ = cv2.findContours(annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
58
  for contour in contours:
59
  contour_all.append(contour)
60
+ cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
61
  color = np.array([0 / 255, 0 / 255, 255 / 255, 0.9])
62
  contour_mask = temp / 255 * color.reshape(1, 1, -1)
63
  # plt.imshow(contour_mask)
 
157
 
158
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
159
 
160
+ def predict(input, input_size=1024, high_visual_quality=True):
161
+ input_size = int(input_size) # 确保 imgsz 是整数
162
+
163
  # Thanks for the suggestion by hysts in HuggingFace.
164
  w, h = input.size
165
  scale = input_size / max(w, h)
 
167
  new_h = int(h * scale)
168
  input = input.resize((new_w, new_h))
169
 
 
170
  results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
171
  fig = fast_process(annotations=results[0].masks.data,
172
  image=input, high_quality=high_visual_quality, device=device)
gradio_cached_examples/16/log.csv DELETED
@@ -1,2 +0,0 @@
1
- output,flag,username,timestamp
2
- /data1/10cls/duyinglong/sam/ultralytics/ultralytics/yolo/v8/segment/demo/FastSAM/gradio_cached_examples/16/output/tmps67a9kx5.png,,,2023-06-22 16:13:18.129722
 
 
 
gradio_cached_examples/16/output/tmps67a9kx5.png DELETED
Binary file (228 kB)