# Ultralytics YOLO 🚀, AGPL-3.0 license import contextlib from copy import deepcopy from pathlib import Path import torch import torch.nn as nn from ultralytics.nn.modules import (AIFI, C1, C2, C3, C3TR, SPP, SPPF, Bottleneck, BottleneckCSP, C2f, C3Ghost, C3x, Classify, Concat, Conv, Conv2, ConvTranspose, Detect, DWConv, DWConvTranspose2d, Focus, GhostBottleneck, GhostConv, HGBlock, HGStem, Pose, RepC3, RepConv, RTDETRDecoder, Segment) from ultralytics.yolo.utils import DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, colorstr, emojis, yaml_load from ultralytics.yolo.utils.checks import check_requirements, check_suffix, check_yaml from ultralytics.yolo.utils.loss import v8ClassificationLoss, v8DetectionLoss, v8PoseLoss, v8SegmentationLoss from ultralytics.yolo.utils.plotting import feature_visualization from ultralytics.yolo.utils.torch_utils import (fuse_conv_and_bn, fuse_deconv_and_bn, initialize_weights, intersect_dicts, make_divisible, model_info, scale_img, time_sync) try: import thop except ImportError: thop = None class BaseModel(nn.Module): """ The BaseModel class serves as a base class for all the models in the Ultralytics YOLO family. """ def forward(self, x, *args, **kwargs): """ Forward pass of the model on a single scale. Wrapper for `_forward_once` method. Args: x (torch.Tensor | dict): The input image tensor or a dict including image tensor and gt labels. Returns: (torch.Tensor): The output of the network. """ if isinstance(x, dict): # for cases of training and validating while training. return self.loss(x, *args, **kwargs) return self.predict(x, *args, **kwargs) def predict(self, x, profile=False, visualize=False, augment=False): """ Perform a forward pass through the network. Args: x (torch.Tensor): The input tensor to the model. profile (bool): Print the computation time of each layer if True, defaults to False. visualize (bool): Save the feature maps of the model if True, defaults to False. augment (bool): Augment image during prediction, defaults to False. Returns: (torch.Tensor): The last output of the model. """ if augment: return self._predict_augment(x) return self._predict_once(x, profile, visualize) def _predict_once(self, x, profile=False, visualize=False): """ Perform a forward pass through the network. Args: x (torch.Tensor): The input tensor to the model. profile (bool): Print the computation time of each layer if True, defaults to False. visualize (bool): Save the feature maps of the model if True, defaults to False. Returns: (torch.Tensor): The last output of the model. """ y, dt = [], [] # outputs for m in self.model: if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: self._profile_one_layer(m, x, dt) x = m(x) # run y.append(x if m.i in self.save else None) # save output if visualize: feature_visualization(x, m.type, m.i, save_dir=visualize) return x def _predict_augment(self, x): """Perform augmentations on input image x and return augmented inference.""" LOGGER.warning( f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.' ) return self._predict_once(x) def _profile_one_layer(self, m, x, dt): """ Profile the computation time and FLOPs of a single layer of the model on a given input. Appends the results to the provided list. Args: m (nn.Module): The layer to be profiled. x (torch.Tensor): The input data to the layer. dt (list): A list to store the computation time of the layer. Returns: None """ c = m == self.model[-1] # is final layer, copy input as inplace fix o = thop.profile(m, inputs=[x.clone() if c else x], verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs t = time_sync() for _ in range(10): m(x.clone() if c else x) dt.append((time_sync() - t) * 100) if m == self.model[0]: LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module") LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') if c: LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") def fuse(self, verbose=True): """ Fuse the `Conv2d()` and `BatchNorm2d()` layers of the model into a single layer, in order to improve the computation efficiency. Returns: (nn.Module): The fused model is returned. """ if not self.is_fused(): for m in self.model.modules(): if isinstance(m, (Conv, Conv2, DWConv)) and hasattr(m, 'bn'): if isinstance(m, Conv2): m.fuse_convs() m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv delattr(m, 'bn') # remove batchnorm m.forward = m.forward_fuse # update forward if isinstance(m, ConvTranspose) and hasattr(m, 'bn'): m.conv_transpose = fuse_deconv_and_bn(m.conv_transpose, m.bn) delattr(m, 'bn') # remove batchnorm m.forward = m.forward_fuse # update forward if isinstance(m, RepConv): m.fuse_convs() m.forward = m.forward_fuse # update forward self.info(verbose=verbose) return self def is_fused(self, thresh=10): """ Check if the model has less than a certain threshold of BatchNorm layers. Args: thresh (int, optional): The threshold number of BatchNorm layers. Default is 10. Returns: (bool): True if the number of BatchNorm layers in the model is less than the threshold, False otherwise. """ bn = tuple(v for k, v in nn.__dict__.items() if 'Norm' in k) # normalization layers, i.e. BatchNorm2d() return sum(isinstance(v, bn) for v in self.modules()) < thresh # True if < 'thresh' BatchNorm layers in model def info(self, detailed=False, verbose=True, imgsz=640): """ Prints model information Args: verbose (bool): if True, prints out the model information. Defaults to False imgsz (int): the size of the image that the model will be trained on. Defaults to 640 """ return model_info(self, detailed=detailed, verbose=verbose, imgsz=imgsz) def _apply(self, fn): """ `_apply()` is a function that applies a function to all the tensors in the model that are not parameters or registered buffers Args: fn: the function to apply to the model Returns: A model that is a Detect() object. """ self = super()._apply(fn) m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment)): m.stride = fn(m.stride) m.anchors = fn(m.anchors) m.strides = fn(m.strides) return self def load(self, weights, verbose=True): """Load the weights into the model. Args: weights (dict | torch.nn.Module): The pre-trained weights to be loaded. verbose (bool, optional): Whether to log the transfer progress. Defaults to True. """ model = weights['model'] if isinstance(weights, dict) else weights # torchvision models are not dicts csd = model.float().state_dict() # checkpoint state_dict as FP32 csd = intersect_dicts(csd, self.state_dict()) # intersect self.load_state_dict(csd, strict=False) # load if verbose: LOGGER.info(f'Transferred {len(csd)}/{len(self.model.state_dict())} items from pretrained weights') def loss(self, batch, preds=None): """ Compute loss Args: batch (dict): Batch to compute loss on preds (torch.Tensor | List[torch.Tensor]): Predictions. """ if not hasattr(self, 'criterion'): self.criterion = self.init_criterion() preds = self.forward(batch['img']) if preds is None else preds return self.criterion(preds, batch) def init_criterion(self): raise NotImplementedError('compute_loss() needs to be implemented by task heads') class DetectionModel(BaseModel): """YOLOv8 detection model.""" def __init__(self, cfg='yolov8n.yaml', ch=3, nc=None, verbose=True): # model, input channels, number of classes super().__init__() self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict self.inplace = self.yaml.get('inplace', True) # Build strides m = self.model[-1] # Detect() if isinstance(m, (Detect, Segment, Pose)): s = 256 # 2x min stride m.inplace = self.inplace forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment, Pose)) else self.forward(x) m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward self.stride = m.stride m.bias_init() # only run once else: self.stride = torch.Tensor([32]) # default stride for i.e. RTDETR # Init weights, biases initialize_weights(self) if verbose: self.info() LOGGER.info('') def _predict_augment(self, x): """Perform augmentations on input image x and return augmented inference and train outputs.""" img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) yi = super().predict(xi)[0] # forward # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save yi = self._descale_pred(yi, fi, si, img_size) y.append(yi) y = self._clip_augmented(y) # clip augmented tails return torch.cat(y, -1), None # augmented inference, train @staticmethod def _descale_pred(p, flips, scale, img_size, dim=1): """De-scale predictions following augmented inference (inverse operation).""" p[:, :4] /= scale # de-scale x, y, wh, cls = p.split((1, 1, 2, p.shape[dim] - 4), dim) if flips == 2: y = img_size[0] - y # de-flip ud elif flips == 3: x = img_size[1] - x # de-flip lr return torch.cat((x, y, wh, cls), dim) def _clip_augmented(self, y): """Clip YOLOv5 augmented inference tails.""" nl = self.model[-1].nl # number of detection layers (P3-P5) g = sum(4 ** x for x in range(nl)) # grid points e = 1 # exclude layer count i = (y[0].shape[-1] // g) * sum(4 ** x for x in range(e)) # indices y[0] = y[0][..., :-i] # large i = (y[-1].shape[-1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices y[-1] = y[-1][..., i:] # small return y def init_criterion(self): return v8DetectionLoss(self) class SegmentationModel(DetectionModel): """YOLOv8 segmentation model.""" def __init__(self, cfg='yolov8n-seg.yaml', ch=3, nc=None, verbose=True): """Initialize YOLOv8 segmentation model with given config and parameters.""" super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) def init_criterion(self): return v8SegmentationLoss(self) def _predict_augment(self, x): """Perform augmentations on input image x and return augmented inference.""" LOGGER.warning( f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.' ) return self._predict_once(x) class PoseModel(DetectionModel): """YOLOv8 pose model.""" def __init__(self, cfg='yolov8n-pose.yaml', ch=3, nc=None, data_kpt_shape=(None, None), verbose=True): """Initialize YOLOv8 Pose model.""" if not isinstance(cfg, dict): cfg = yaml_model_load(cfg) # load model YAML if any(data_kpt_shape) and list(data_kpt_shape) != list(cfg['kpt_shape']): LOGGER.info(f"Overriding model.yaml kpt_shape={cfg['kpt_shape']} with kpt_shape={data_kpt_shape}") cfg['kpt_shape'] = data_kpt_shape super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) def init_criterion(self): return v8PoseLoss(self) def _predict_augment(self, x): """Perform augmentations on input image x and return augmented inference.""" LOGGER.warning( f'WARNING ⚠️ {self.__class__.__name__} has not supported augment inference yet! Now using single-scale inference instead.' ) return self._predict_once(x) class ClassificationModel(BaseModel): """YOLOv8 classification model.""" def __init__(self, cfg=None, model=None, ch=3, nc=None, cutoff=10, verbose=True): # yaml, model, channels, number of classes, cutoff index, verbose flag super().__init__() self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg, ch, nc, verbose) def _from_detection_model(self, model, nc=1000, cutoff=10): """Create a YOLOv5 classification model from a YOLOv5 detection model.""" from ultralytics.nn.autobackend import AutoBackend if isinstance(model, AutoBackend): model = model.model # unwrap DetectMultiBackend model.model = model.model[:cutoff] # backbone m = model.model[-1] # last layer ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module c = Classify(ch, nc) # Classify() c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type model.model[-1] = c # replace self.model = model.model self.stride = model.stride self.save = [] self.nc = nc def _from_yaml(self, cfg, ch, nc, verbose): """Set YOLOv8 model configurations and define the model architecture.""" self.yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg) # cfg dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value elif not nc and not self.yaml.get('nc', None): raise ValueError('nc not specified. Must specify nc in model.yaml or function arguments.') self.model, self.save = parse_model(deepcopy(self.yaml), ch=ch, verbose=verbose) # model, savelist self.stride = torch.Tensor([1]) # no stride constraints self.names = {i: f'{i}' for i in range(self.yaml['nc'])} # default names dict self.info() @staticmethod def reshape_outputs(model, nc): """Update a TorchVision classification model to class count 'n' if required.""" name, m = list((model.model if hasattr(model, 'model') else model).named_children())[-1] # last module if isinstance(m, Classify): # YOLO Classify() head if m.linear.out_features != nc: m.linear = nn.Linear(m.linear.in_features, nc) elif isinstance(m, nn.Linear): # ResNet, EfficientNet if m.out_features != nc: setattr(model, name, nn.Linear(m.in_features, nc)) elif isinstance(m, nn.Sequential): types = [type(x) for x in m] if nn.Linear in types: i = types.index(nn.Linear) # nn.Linear index if m[i].out_features != nc: m[i] = nn.Linear(m[i].in_features, nc) elif nn.Conv2d in types: i = types.index(nn.Conv2d) # nn.Conv2d index if m[i].out_channels != nc: m[i] = nn.Conv2d(m[i].in_channels, nc, m[i].kernel_size, m[i].stride, bias=m[i].bias is not None) def init_criterion(self): """Compute the classification loss between predictions and true labels.""" return v8ClassificationLoss() class RTDETRDetectionModel(DetectionModel): def __init__(self, cfg='rtdetr-l.yaml', ch=3, nc=None, verbose=True): super().__init__(cfg=cfg, ch=ch, nc=nc, verbose=verbose) def init_criterion(self): """Compute the classification loss between predictions and true labels.""" from ultralytics.vit.utils.loss import RTDETRDetectionLoss return RTDETRDetectionLoss(nc=self.nc, use_vfl=True) def loss(self, batch, preds=None): if not hasattr(self, 'criterion'): self.criterion = self.init_criterion() img = batch['img'] # NOTE: preprocess gt_bbox and gt_labels to list. bs = len(img) batch_idx = batch['batch_idx'] gt_groups = [(batch_idx == i).sum().item() for i in range(bs)] targets = { 'cls': batch['cls'].to(img.device, dtype=torch.long).view(-1), 'bboxes': batch['bboxes'].to(device=img.device), 'batch_idx': batch_idx.to(img.device, dtype=torch.long).view(-1), 'gt_groups': gt_groups} preds = self.predict(img, batch=targets) if preds is None else preds dec_bboxes, dec_scores, enc_bboxes, enc_scores, dn_meta = preds if dn_meta is None: dn_bboxes, dn_scores = None, None else: dn_bboxes, dec_bboxes = torch.split(dec_bboxes, dn_meta['dn_num_split'], dim=2) dn_scores, dec_scores = torch.split(dec_scores, dn_meta['dn_num_split'], dim=2) dec_bboxes = torch.cat([enc_bboxes.unsqueeze(0), dec_bboxes]) # (7, bs, 300, 4) dec_scores = torch.cat([enc_scores.unsqueeze(0), dec_scores]) loss = self.criterion((dec_bboxes, dec_scores), targets, dn_bboxes=dn_bboxes, dn_scores=dn_scores, dn_meta=dn_meta) # NOTE: There are like 12 losses in RTDETR, backward with all losses but only show the main three losses. return sum(loss.values()), torch.as_tensor([loss[k].detach() for k in ['loss_giou', 'loss_class', 'loss_bbox']], device=img.device) def predict(self, x, profile=False, visualize=False, batch=None, augment=False): """ Perform a forward pass through the network. Args: x (torch.Tensor): The input tensor to the model profile (bool): Print the computation time of each layer if True, defaults to False. visualize (bool): Save the feature maps of the model if True, defaults to False batch (dict): A dict including gt boxes and labels from dataloader. Returns: (torch.Tensor): The last output of the model. """ y, dt = [], [] # outputs for m in self.model[:-1]: # except the head part if m.f != -1: # if not from previous layer x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers if profile: self._profile_one_layer(m, x, dt) x = m(x) # run y.append(x if m.i in self.save else None) # save output if visualize: feature_visualization(x, m.type, m.i, save_dir=visualize) head = self.model[-1] x = head([y[j] for j in head.f], batch) # head inference return x class Ensemble(nn.ModuleList): """Ensemble of models.""" def __init__(self): """Initialize an ensemble of models.""" super().__init__() def forward(self, x, augment=False, profile=False, visualize=False): """Function generates the YOLOv5 network's final layer.""" y = [module(x, augment, profile, visualize)[0] for module in self] # y = torch.stack(y).max(0)[0] # max ensemble # y = torch.stack(y).mean(0) # mean ensemble y = torch.cat(y, 2) # nms ensemble, y shape(B, HW, C) return y, None # inference, train output # Functions ------------------------------------------------------------------------------------------------------------ def torch_safe_load(weight): """ This function attempts to load a PyTorch model with the torch.load() function. If a ModuleNotFoundError is raised, it catches the error, logs a warning message, and attempts to install the missing module via the check_requirements() function. After installation, the function again attempts to load the model using torch.load(). Args: weight (str): The file path of the PyTorch model. Returns: (dict): The loaded PyTorch model. """ from ultralytics.yolo.utils.downloads import attempt_download_asset check_suffix(file=weight, suffix='.pt') file = attempt_download_asset(weight) # search online if missing locally try: return torch.load(file, map_location='cpu'), file # load except ModuleNotFoundError as e: # e.name is missing module name if e.name == 'models': raise TypeError( emojis(f'ERROR ❌️ {weight} appears to be an Ultralytics YOLOv5 model originally trained ' f'with https://github.com/ultralytics/yolov5.\nThis model is NOT forwards compatible with ' f'YOLOv8 at https://github.com/ultralytics/ultralytics.' f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to " f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'")) from e LOGGER.warning(f"WARNING ⚠️ {weight} appears to require '{e.name}', which is not in ultralytics requirements." f"\nAutoInstall will run now for '{e.name}' but this feature will be removed in the future." f"\nRecommend fixes are to train a new model using the latest 'ultralytics' package or to " f"run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt'") check_requirements(e.name) # install missing module return torch.load(file, map_location='cpu'), file # load def attempt_load_weights(weights, device=None, inplace=True, fuse=False): """Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a.""" ensemble = Ensemble() for w in weights if isinstance(weights, list) else [weights]: ckpt, w = torch_safe_load(w) # load ckpt args = {**DEFAULT_CFG_DICT, **ckpt['train_args']} if 'train_args' in ckpt else None # combined args model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model # Model compatibility updates model.args = args # attach args to model model.pt_path = w # attach *.pt file path to model model.task = guess_model_task(model) if not hasattr(model, 'stride'): model.stride = torch.tensor([32.]) # Append ensemble.append(model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval()) # model in eval mode # Module compatibility updates for m in ensemble.modules(): t = type(m) if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment): m.inplace = inplace # torch 1.7.0 compatibility elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): m.recompute_scale_factor = None # torch 1.11.0 compatibility # Return model if len(ensemble) == 1: return ensemble[-1] # Return ensemble LOGGER.info(f'Ensemble created with {weights}\n') for k in 'names', 'nc', 'yaml': setattr(ensemble, k, getattr(ensemble[0], k)) ensemble.stride = ensemble[torch.argmax(torch.tensor([m.stride.max() for m in ensemble])).int()].stride assert all(ensemble[0].nc == m.nc for m in ensemble), f'Models differ in class counts {[m.nc for m in ensemble]}' return ensemble def attempt_load_one_weight(weight, device=None, inplace=True, fuse=False): """Loads a single model weights.""" ckpt, weight = torch_safe_load(weight) # load ckpt args = {**DEFAULT_CFG_DICT, **(ckpt.get('train_args', {}))} # combine model and default args, preferring model args model = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model # Model compatibility updates model.args = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # attach args to model model.pt_path = weight # attach *.pt file path to model model.task = guess_model_task(model) if not hasattr(model, 'stride'): model.stride = torch.tensor([32.]) model = model.fuse().eval() if fuse and hasattr(model, 'fuse') else model.eval() # model in eval mode # Module compatibility updates for m in model.modules(): t = type(m) if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Segment): m.inplace = inplace # torch 1.7.0 compatibility elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'): m.recompute_scale_factor = None # torch 1.11.0 compatibility # Return model and ckpt return model, ckpt def parse_model(d, ch, verbose=True): # model_dict, input_channels(3) # Parse a YOLO model.yaml dictionary into a PyTorch model import ast # Args max_channels = float('inf') nc, act, scales = (d.get(x) for x in ('nc', 'activation', 'scales')) depth, width, kpt_shape = (d.get(x, 1.0) for x in ('depth_multiple', 'width_multiple', 'kpt_shape')) if scales: scale = d.get('scale') if not scale: scale = tuple(scales.keys())[0] LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.") depth, width, max_channels = scales[scale] if act: Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU() if verbose: LOGGER.info(f"{colorstr('activation:')} {act}") # print if verbose: LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}") ch = [ch] layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get module for j, a in enumerate(args): if isinstance(a, str): with contextlib.suppress(ValueError): args[j] = locals()[a] if a in locals() else ast.literal_eval(a) n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain if m in (Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3): c1, c2 = ch[f], args[0] if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output) c2 = make_divisible(min(c2, max_channels) * width, 8) args = [c1, c2, *args[1:]] if m in (BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3): args.insert(2, n) # number of repeats n = 1 elif m is AIFI: args = [ch[f], *args] elif m in (HGStem, HGBlock): c1, cm, c2 = ch[f], args[0], args[1] args = [c1, cm, c2, *args[2:]] if m is HGBlock: args.insert(4, n) # number of repeats n = 1 elif m is nn.BatchNorm2d: args = [ch[f]] elif m is Concat: c2 = sum(ch[x] for x in f) elif m in (Detect, Segment, Pose, RTDETRDecoder): args.append([ch[x] for x in f]) if m is Segment: args[2] = make_divisible(min(args[2], max_channels) * width, 8) else: c2 = ch[f] m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module t = str(m)[8:-2].replace('__main__.', '') # module type m.np = sum(x.numel() for x in m_.parameters()) # number params m_.i, m_.f, m_.type = i, f, t # attach index, 'from' index, type if verbose: LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) if i == 0: ch = [] ch.append(c2) return nn.Sequential(*layers), sorted(save) def yaml_model_load(path): """Load a YOLOv8 model from a YAML file.""" import re path = Path(path) if path.stem in (f'yolov{d}{x}6' for x in 'nsmlx' for d in (5, 8)): new_stem = re.sub(r'(\d+)([nslmx])6(.+)?$', r'\1\2-p6\3', path.stem) LOGGER.warning(f'WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.') path = path.with_stem(new_stem) unified_path = re.sub(r'(\d+)([nslmx])(.+)?$', r'\1\3', str(path)) # i.e. yolov8x.yaml -> yolov8.yaml yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path) d = yaml_load(yaml_file) # model dict d['scale'] = guess_model_scale(path) d['yaml_file'] = str(path) return d def guess_model_scale(model_path): """ Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale. The function uses regular expression matching to find the pattern of the model scale in the YAML file name, which is denoted by n, s, m, l, or x. The function returns the size character of the model scale as a string. Args: model_path (str | Path): The path to the YOLO model's YAML file. Returns: (str): The size character of the model's scale, which can be n, s, m, l, or x. """ with contextlib.suppress(AttributeError): import re return re.search(r'yolov\d+([nslmx])', Path(model_path).stem).group(1) # n, s, m, l, or x return '' def guess_model_task(model): """ Guess the task of a PyTorch model from its architecture or configuration. Args: model (nn.Module | dict): PyTorch model or model configuration in YAML format. Returns: (str): Task of the model ('detect', 'segment', 'classify', 'pose'). Raises: SyntaxError: If the task of the model could not be determined. """ def cfg2task(cfg): """Guess from YAML dictionary.""" m = cfg['head'][-1][-2].lower() # output module name if m in ('classify', 'classifier', 'cls', 'fc'): return 'classify' if m == 'detect': return 'detect' if m == 'segment': return 'segment' if m == 'pose': return 'pose' # Guess from model cfg if isinstance(model, dict): with contextlib.suppress(Exception): return cfg2task(model) # Guess from PyTorch model if isinstance(model, nn.Module): # PyTorch model for x in 'model.args', 'model.model.args', 'model.model.model.args': with contextlib.suppress(Exception): return eval(x)['task'] for x in 'model.yaml', 'model.model.yaml', 'model.model.model.yaml': with contextlib.suppress(Exception): return cfg2task(eval(x)) for m in model.modules(): if isinstance(m, Detect): return 'detect' elif isinstance(m, Segment): return 'segment' elif isinstance(m, Classify): return 'classify' elif isinstance(m, Pose): return 'pose' # Guess from model filename if isinstance(model, (str, Path)): model = Path(model) if '-seg' in model.stem or 'segment' in model.parts: return 'segment' elif '-cls' in model.stem or 'classify' in model.parts: return 'classify' elif '-pose' in model.stem or 'pose' in model.parts: return 'pose' elif 'detect' in model.parts: return 'detect' # Unable to determine task from model LOGGER.warning("WARNING ⚠️ Unable to automatically guess model task, assuming 'task=detect'. " "Explicitly define task for your model, i.e. 'task=detect', 'segment', 'classify', or 'pose'.") return 'detect' # assume detect