# Ultralytics YOLO 🚀, AGPL-3.0 license import os import re from pathlib import Path from ultralytics.yolo.utils import LOGGER, TESTS_RUNNING, colorstr try: import mlflow assert not TESTS_RUNNING # do not log pytest assert hasattr(mlflow, '__version__') # verify package is not directory except (ImportError, AssertionError): mlflow = None def on_pretrain_routine_end(trainer): """Logs training parameters to MLflow.""" global mlflow, run, run_id, experiment_name if os.environ.get('MLFLOW_TRACKING_URI') is None: mlflow = None if mlflow: mlflow_location = os.environ['MLFLOW_TRACKING_URI'] # "http://192.168.xxx.xxx:5000" mlflow.set_tracking_uri(mlflow_location) experiment_name = os.environ.get('MLFLOW_EXPERIMENT') or trainer.args.project or '/Shared/YOLOv8' experiment = mlflow.get_experiment_by_name(experiment_name) if experiment is None: mlflow.create_experiment(experiment_name) mlflow.set_experiment(experiment_name) prefix = colorstr('MLFlow: ') try: run, active_run = mlflow, mlflow.active_run() if not active_run: active_run = mlflow.start_run(experiment_id=experiment.experiment_id) run_id = active_run.info.run_id LOGGER.info(f'{prefix}Using run_id({run_id}) at {mlflow_location}') run.log_params(vars(trainer.model.args)) except Exception as err: LOGGER.error(f'{prefix}Failing init - {repr(err)}') LOGGER.warning(f'{prefix}Continuing without Mlflow') def on_fit_epoch_end(trainer): """Logs training metrics to Mlflow.""" if mlflow: metrics_dict = {f"{re.sub('[()]', '', k)}": float(v) for k, v in trainer.metrics.items()} run.log_metrics(metrics=metrics_dict, step=trainer.epoch) def on_train_end(trainer): """Called at end of train loop to log model artifact info.""" if mlflow: root_dir = Path(__file__).resolve().parents[3] run.log_artifact(trainer.last) run.log_artifact(trainer.best) run.pyfunc.log_model(artifact_path=experiment_name, code_path=[str(root_dir)], artifacts={'model_path': str(trainer.save_dir)}, python_model=run.pyfunc.PythonModel()) callbacks = { 'on_pretrain_routine_end': on_pretrain_routine_end, 'on_fit_epoch_end': on_fit_epoch_end, 'on_train_end': on_train_end} if mlflow else {}