from ultralytics import YOLO import numpy as np import matplotlib.pyplot as plt import gradio as gr import torch model = YOLO('checkpoints/FastSAM.pt') # load a custom model def format_results(result,filter = 0): annotations = [] n = len(result.masks.data) for i in range(n): annotation = {} mask = result.masks.data[i] == 1.0 if torch.sum(mask) < filter: continue annotation['id'] = i annotation['segmentation'] = mask.cpu().numpy() annotation['bbox'] = result.boxes.data[i] annotation['score'] = result.boxes.conf[i] annotation['area'] = annotation['segmentation'].sum() annotations.append(annotation) return annotations def show_mask(annotation, ax, random_color=True, bbox=None, points=None): if random_color : # random mask color color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) else: color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) if type(annotation) == dict: annotation = annotation['segmentation'] mask = annotation h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) # draw box if bbox is not None: x1, y1, x2, y2 = bbox ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1)) # draw point if points is not None: ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g') ax.imshow(mask_image) return mask_image def post_process(annotations, image, mask_random_color=True, bbox=None, points=None): fig = plt.figure(figsize=(10, 10)) plt.imshow(image) for i, mask in enumerate(annotations): show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points) plt.axis('off') # # create a BytesIO object # buf = io.BytesIO() # # save plot to buf # plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0.0) # # use PIL to open the image # img = Image.open(buf) # # copy the image data # img_copy = img.copy() plt.tight_layout() # # don't forget to close the buffer # buf.close() return fig # def show_mask(annotation, ax, random_color=False): # if random_color : # 掩膜颜色是否随机决定 # color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0) # else: # color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6]) # mask = annotation.cpu().numpy() # h, w = mask.shape[-2:] # mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) # ax.imshow(mask_image) # def post_process(annotations, image): # plt.figure(figsize=(10, 10)) # plt.imshow(image) # for i, mask in enumerate(annotations): # show_mask(mask.data, plt.gca(),random_color=True) # plt.axis('off') # 获取渲染后的像素数据并转换为PIL图像 return pil_image # post_process(results[0].masks, Image.open("../data/cake.png")) def predict(inp): results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024) results = format_results(results[0], 100) pil_image = post_process(annotations=results, image=inp) return pil_image # inp = 'assets/sa_192.jpg' # results = model(inp, device='cpu', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024) # results = format_results(results[0], 100) # post_process(annotations=results, image_path=inp) demo = gr.Interface(fn=predict, inputs=gr.inputs.Image(type='pil'), outputs=['plot'], examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"], ["assets/sa_561.jpg"], ["assets/sa_862.jpg"], ["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"], ["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],], ) demo.launch()