# Ultralytics YOLO 🚀, AGPL-3.0 license import copy import cv2 import numpy as np from ultralytics.yolo.utils import LOGGER class GMC: def __init__(self, method='sparseOptFlow', downscale=2, verbose=None): """Initialize a video tracker with specified parameters.""" super().__init__() self.method = method self.downscale = max(1, int(downscale)) if self.method == 'orb': self.detector = cv2.FastFeatureDetector_create(20) self.extractor = cv2.ORB_create() self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING) elif self.method == 'sift': self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20) self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20) self.matcher = cv2.BFMatcher(cv2.NORM_L2) elif self.method == 'ecc': number_of_iterations = 5000 termination_eps = 1e-6 self.warp_mode = cv2.MOTION_EUCLIDEAN self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps) elif self.method == 'sparseOptFlow': self.feature_params = dict(maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04) # self.gmc_file = open('GMC_results.txt', 'w') elif self.method in ['file', 'files']: seqName = verbose[0] ablation = verbose[1] if ablation: filePath = r'tracker/GMC_files/MOT17_ablation' else: filePath = r'tracker/GMC_files/MOTChallenge' if '-FRCNN' in seqName: seqName = seqName[:-6] elif '-DPM' in seqName or '-SDP' in seqName: seqName = seqName[:-4] self.gmcFile = open(f'{filePath}/GMC-{seqName}.txt') if self.gmcFile is None: raise ValueError(f'Error: Unable to open GMC file in directory:{filePath}') elif self.method in ['none', 'None']: self.method = 'none' else: raise ValueError(f'Error: Unknown CMC method:{method}') self.prevFrame = None self.prevKeyPoints = None self.prevDescriptors = None self.initializedFirstFrame = False def apply(self, raw_frame, detections=None): """Apply object detection on a raw frame using specified method.""" if self.method in ['orb', 'sift']: return self.applyFeatures(raw_frame, detections) elif self.method == 'ecc': return self.applyEcc(raw_frame, detections) elif self.method == 'sparseOptFlow': return self.applySparseOptFlow(raw_frame, detections) elif self.method == 'file': return self.applyFile(raw_frame, detections) elif self.method == 'none': return np.eye(2, 3) else: return np.eye(2, 3) def applyEcc(self, raw_frame, detections=None): """Initialize.""" height, width, _ = raw_frame.shape frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) H = np.eye(2, 3, dtype=np.float32) # Downscale image (TODO: consider using pyramids) if self.downscale > 1.0: frame = cv2.GaussianBlur(frame, (3, 3), 1.5) frame = cv2.resize(frame, (width // self.downscale, height // self.downscale)) width = width // self.downscale height = height // self.downscale # Handle first frame if not self.initializedFirstFrame: # Initialize data self.prevFrame = frame.copy() # Initialization done self.initializedFirstFrame = True return H # Run the ECC algorithm. The results are stored in warp_matrix. # (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria) try: (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1) except Exception as e: LOGGER.warning(f'WARNING: find transform failed. Set warp as identity {e}') return H def applyFeatures(self, raw_frame, detections=None): """Initialize.""" height, width, _ = raw_frame.shape frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) H = np.eye(2, 3) # Downscale image (TODO: consider using pyramids) if self.downscale > 1.0: # frame = cv2.GaussianBlur(frame, (3, 3), 1.5) frame = cv2.resize(frame, (width // self.downscale, height // self.downscale)) width = width // self.downscale height = height // self.downscale # Find the keypoints mask = np.zeros_like(frame) # mask[int(0.05 * height): int(0.95 * height), int(0.05 * width): int(0.95 * width)] = 255 mask[int(0.02 * height):int(0.98 * height), int(0.02 * width):int(0.98 * width)] = 255 if detections is not None: for det in detections: tlbr = (det[:4] / self.downscale).astype(np.int_) mask[tlbr[1]:tlbr[3], tlbr[0]:tlbr[2]] = 0 keypoints = self.detector.detect(frame, mask) # Compute the descriptors keypoints, descriptors = self.extractor.compute(frame, keypoints) # Handle first frame if not self.initializedFirstFrame: # Initialize data self.prevFrame = frame.copy() self.prevKeyPoints = copy.copy(keypoints) self.prevDescriptors = copy.copy(descriptors) # Initialization done self.initializedFirstFrame = True return H # Match descriptors. knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2) # Filtered matches based on smallest spatial distance matches = [] spatialDistances = [] maxSpatialDistance = 0.25 * np.array([width, height]) # Handle empty matches case if len(knnMatches) == 0: # Store to next iteration self.prevFrame = frame.copy() self.prevKeyPoints = copy.copy(keypoints) self.prevDescriptors = copy.copy(descriptors) return H for m, n in knnMatches: if m.distance < 0.9 * n.distance: prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt currKeyPointLocation = keypoints[m.trainIdx].pt spatialDistance = (prevKeyPointLocation[0] - currKeyPointLocation[0], prevKeyPointLocation[1] - currKeyPointLocation[1]) if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and \ (np.abs(spatialDistance[1]) < maxSpatialDistance[1]): spatialDistances.append(spatialDistance) matches.append(m) meanSpatialDistances = np.mean(spatialDistances, 0) stdSpatialDistances = np.std(spatialDistances, 0) inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances goodMatches = [] prevPoints = [] currPoints = [] for i in range(len(matches)): if inliers[i, 0] and inliers[i, 1]: goodMatches.append(matches[i]) prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt) currPoints.append(keypoints[matches[i].trainIdx].pt) prevPoints = np.array(prevPoints) currPoints = np.array(currPoints) # Draw the keypoint matches on the output image # if False: # import matplotlib.pyplot as plt # matches_img = np.hstack((self.prevFrame, frame)) # matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR) # W = np.size(self.prevFrame, 1) # for m in goodMatches: # prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_) # curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_) # curr_pt[0] += W # color = np.random.randint(0, 255, 3) # color = (int(color[0]), int(color[1]), int(color[2])) # # matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA) # matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1) # matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1) # # plt.figure() # plt.imshow(matches_img) # plt.show() # Find rigid matrix if (np.size(prevPoints, 0) > 4) and (np.size(prevPoints, 0) == np.size(prevPoints, 0)): H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC) # Handle downscale if self.downscale > 1.0: H[0, 2] *= self.downscale H[1, 2] *= self.downscale else: LOGGER.warning('WARNING: not enough matching points') # Store to next iteration self.prevFrame = frame.copy() self.prevKeyPoints = copy.copy(keypoints) self.prevDescriptors = copy.copy(descriptors) return H def applySparseOptFlow(self, raw_frame, detections=None): """Initialize.""" # t0 = time.time() height, width, _ = raw_frame.shape frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY) H = np.eye(2, 3) # Downscale image if self.downscale > 1.0: # frame = cv2.GaussianBlur(frame, (3, 3), 1.5) frame = cv2.resize(frame, (width // self.downscale, height // self.downscale)) # Find the keypoints keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params) # Handle first frame if not self.initializedFirstFrame: # Initialize data self.prevFrame = frame.copy() self.prevKeyPoints = copy.copy(keypoints) # Initialization done self.initializedFirstFrame = True return H # Find correspondences matchedKeypoints, status, err = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None) # Leave good correspondences only prevPoints = [] currPoints = [] for i in range(len(status)): if status[i]: prevPoints.append(self.prevKeyPoints[i]) currPoints.append(matchedKeypoints[i]) prevPoints = np.array(prevPoints) currPoints = np.array(currPoints) # Find rigid matrix if (np.size(prevPoints, 0) > 4) and (np.size(prevPoints, 0) == np.size(prevPoints, 0)): H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC) # Handle downscale if self.downscale > 1.0: H[0, 2] *= self.downscale H[1, 2] *= self.downscale else: LOGGER.warning('WARNING: not enough matching points') # Store to next iteration self.prevFrame = frame.copy() self.prevKeyPoints = copy.copy(keypoints) # gmc_line = str(1000 * (time.time() - t0)) + "\t" + str(H[0, 0]) + "\t" + str(H[0, 1]) + "\t" + str( # H[0, 2]) + "\t" + str(H[1, 0]) + "\t" + str(H[1, 1]) + "\t" + str(H[1, 2]) + "\n" # self.gmc_file.write(gmc_line) return H def applyFile(self, raw_frame, detections=None): """Return the homography matrix based on the GCPs in the next line of the input GMC file.""" line = self.gmcFile.readline() tokens = line.split('\t') H = np.eye(2, 3, dtype=np.float_) H[0, 0] = float(tokens[1]) H[0, 1] = float(tokens[2]) H[0, 2] = float(tokens[3]) H[1, 0] = float(tokens[4]) H[1, 1] = float(tokens[5]) H[1, 2] = float(tokens[6]) return H