# Ultralytics YOLO 🚀, AGPL-3.0 license from copy import copy import torch from ultralytics.nn.tasks import RTDETRDetectionModel from ultralytics.yolo.utils import DEFAULT_CFG, RANK, colorstr from ultralytics.yolo.v8.detect import DetectionTrainer from .val import RTDETRDataset, RTDETRValidator class RTDETRTrainer(DetectionTrainer): def get_model(self, cfg=None, weights=None, verbose=True): """Return a YOLO detection model.""" model = RTDETRDetectionModel(cfg, nc=self.data['nc'], verbose=verbose and RANK == -1) if weights: model.load(weights) return model def build_dataset(self, img_path, mode='val', batch=None): """Build RTDETR Dataset Args: img_path (str): Path to the folder containing images. mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode. batch (int, optional): Size of batches, this is for `rect`. Defaults to None. """ return RTDETRDataset( img_path=img_path, imgsz=self.args.imgsz, batch_size=batch, augment=mode == 'train', # no augmentation hyp=self.args, rect=False, # no rect cache=self.args.cache or None, prefix=colorstr(f'{mode}: '), data=self.data) def get_validator(self): """Returns a DetectionValidator for RTDETR model validation.""" self.loss_names = 'giou_loss', 'cls_loss', 'l1_loss' return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args)) def preprocess_batch(self, batch): """Preprocesses a batch of images by scaling and converting to float.""" batch = super().preprocess_batch(batch) bs = len(batch['img']) batch_idx = batch['batch_idx'] gt_bbox, gt_class = [], [] for i in range(bs): gt_bbox.append(batch['bboxes'][batch_idx == i].to(batch_idx.device)) gt_class.append(batch['cls'][batch_idx == i].to(device=batch_idx.device, dtype=torch.long)) return batch def train(cfg=DEFAULT_CFG, use_python=False): """Train and optimize RTDETR model given training data and device.""" model = 'rtdetr-l.yaml' data = cfg.data or 'coco128.yaml' # or yolo.ClassificationDataset("mnist") device = cfg.device if cfg.device is not None else '' # NOTE: F.grid_sample which is in rt-detr does not support deterministic=True # NOTE: amp training causes nan outputs and end with error while doing bipartite graph matching args = dict(model=model, data=data, device=device, imgsz=640, exist_ok=True, batch=4, deterministic=False, amp=False) trainer = RTDETRTrainer(overrides=args) trainer.train() if __name__ == '__main__': train()