# Ultralytics YOLO 🚀, AGPL-3.0 license """ Benchmark a YOLO model formats for speed and accuracy Usage: from ultralytics.yolo.utils.benchmarks import ProfileModels, benchmark ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile() run_benchmarks(model='yolov8n.pt', imgsz=160) Format | `format=argument` | Model --- | --- | --- PyTorch | - | yolov8n.pt TorchScript | `torchscript` | yolov8n.torchscript ONNX | `onnx` | yolov8n.onnx OpenVINO | `openvino` | yolov8n_openvino_model/ TensorRT | `engine` | yolov8n.engine CoreML | `coreml` | yolov8n.mlmodel TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/ TensorFlow GraphDef | `pb` | yolov8n.pb TensorFlow Lite | `tflite` | yolov8n.tflite TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite TensorFlow.js | `tfjs` | yolov8n_web_model/ PaddlePaddle | `paddle` | yolov8n_paddle_model/ """ import glob import platform import time from pathlib import Path import numpy as np import torch.cuda from tqdm import tqdm from ultralytics import YOLO from ultralytics.yolo.engine.exporter import export_formats from ultralytics.yolo.utils import LINUX, LOGGER, MACOS, ROOT, SETTINGS from ultralytics.yolo.utils.checks import check_requirements, check_yolo from ultralytics.yolo.utils.downloads import download from ultralytics.yolo.utils.files import file_size from ultralytics.yolo.utils.torch_utils import select_device def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt', imgsz=160, half=False, int8=False, device='cpu', hard_fail=False): """ Benchmark a YOLO model across different formats for speed and accuracy. Args: model (str | Path | optional): Path to the model file or directory. Default is Path(SETTINGS['weights_dir']) / 'yolov8n.pt'. imgsz (int, optional): Image size for the benchmark. Default is 160. half (bool, optional): Use half-precision for the model if True. Default is False. int8 (bool, optional): Use int8-precision for the model if True. Default is False. device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'. hard_fail (bool | float | optional): If True or a float, assert benchmarks pass with given metric. Default is False. Returns: df (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size, metric, and inference time. """ import pandas as pd pd.options.display.max_columns = 10 pd.options.display.width = 120 device = select_device(device, verbose=False) if isinstance(model, (str, Path)): model = YOLO(model) y = [] t0 = time.time() for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU) emoji, filename = '❌', None # export defaults try: assert i != 9 or LINUX, 'Edge TPU export only supported on Linux' if i == 10: assert MACOS or LINUX, 'TF.js export only supported on macOS and Linux' if 'cpu' in device.type: assert cpu, 'inference not supported on CPU' if 'cuda' in device.type: assert gpu, 'inference not supported on GPU' # Export if format == '-': filename = model.ckpt_path or model.cfg export = model # PyTorch format else: filename = model.export(imgsz=imgsz, format=format, half=half, int8=int8, device=device, verbose=False) export = YOLO(filename, task=model.task) assert suffix in str(filename), 'export failed' emoji = '❎' # indicates export succeeded # Predict assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML if not (ROOT / 'assets/bus.jpg').exists(): download(url='https://ultralytics.com/images/bus.jpg', dir=ROOT / 'assets') export.predict(ROOT / 'assets/bus.jpg', imgsz=imgsz, device=device, half=half) # Validate if model.task == 'detect': data, key = 'coco8.yaml', 'metrics/mAP50-95(B)' elif model.task == 'segment': data, key = 'coco8-seg.yaml', 'metrics/mAP50-95(M)' elif model.task == 'classify': data, key = 'imagenet100', 'metrics/accuracy_top5' elif model.task == 'pose': data, key = 'coco8-pose.yaml', 'metrics/mAP50-95(P)' results = export.val(data=data, batch=1, imgsz=imgsz, plots=False, device=device, half=half, int8=int8, verbose=False) metric, speed = results.results_dict[key], results.speed['inference'] y.append([name, '✅', round(file_size(filename), 1), round(metric, 4), round(speed, 2)]) except Exception as e: if hard_fail: assert type(e) is AssertionError, f'Benchmark hard_fail for {name}: {e}' LOGGER.warning(f'ERROR ❌️ Benchmark failure for {name}: {e}') y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference # Print results check_yolo(device=device) # print system info df = pd.DataFrame(y, columns=['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)']) name = Path(model.ckpt_path).name s = f'\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n' LOGGER.info(s) with open('benchmarks.log', 'a', errors='ignore', encoding='utf-8') as f: f.write(s) if hard_fail and isinstance(hard_fail, float): metrics = df[key].array # values to compare to floor floor = hard_fail # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: one or more metric(s) < floor {floor}' return df class ProfileModels: """ ProfileModels class for profiling different models on ONNX and TensorRT. This class profiles the performance of different models, provided their paths. The profiling includes parameters such as model speed and FLOPs. Attributes: paths (list): Paths of the models to profile. num_timed_runs (int): Number of timed runs for the profiling. Default is 100. num_warmup_runs (int): Number of warmup runs before profiling. Default is 10. min_time (float): Minimum number of seconds to profile for. Default is 60. imgsz (int): Image size used in the models. Default is 640. Methods: profile(): Profiles the models and prints the result. """ def __init__(self, paths: list, num_timed_runs=100, num_warmup_runs=10, min_time=60, imgsz=640, trt=True, device=None): self.paths = paths self.num_timed_runs = num_timed_runs self.num_warmup_runs = num_warmup_runs self.min_time = min_time self.imgsz = imgsz self.trt = trt # run TensorRT profiling self.device = device or torch.device(0 if torch.cuda.is_available() else 'cpu') def profile(self): files = self.get_files() if not files: print('No matching *.pt or *.onnx files found.') return table_rows = [] output = [] for file in files: engine_file = file.with_suffix('.engine') if file.suffix in ('.pt', '.yaml'): model = YOLO(str(file)) model.fuse() # to report correct params and GFLOPs in model.info() model_info = model.info() if self.trt and self.device.type != 'cpu' and not engine_file.is_file(): engine_file = model.export(format='engine', half=True, imgsz=self.imgsz, device=self.device, verbose=False) onnx_file = model.export(format='onnx', half=True, imgsz=self.imgsz, simplify=True, device=self.device, verbose=False) elif file.suffix == '.onnx': model_info = self.get_onnx_model_info(file) onnx_file = file else: continue t_engine = self.profile_tensorrt_model(str(engine_file)) t_onnx = self.profile_onnx_model(str(onnx_file)) table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info)) output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info)) self.print_table(table_rows) return output def get_files(self): files = [] for path in self.paths: path = Path(path) if path.is_dir(): extensions = ['*.pt', '*.onnx', '*.yaml'] files.extend([file for ext in extensions for file in glob.glob(str(path / ext))]) elif path.suffix in {'.pt', '.yaml'}: # add non-existing files.append(str(path)) else: files.extend(glob.glob(str(path))) print(f'Profiling: {sorted(files)}') return [Path(file) for file in sorted(files)] def get_onnx_model_info(self, onnx_file: str): # return (num_layers, num_params, num_gradients, num_flops) return 0.0, 0.0, 0.0, 0.0 def iterative_sigma_clipping(self, data, sigma=2, max_iters=3): data = np.array(data) for _ in range(max_iters): mean, std = np.mean(data), np.std(data) clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)] if len(clipped_data) == len(data): break data = clipped_data return data def profile_tensorrt_model(self, engine_file: str): if not self.trt or not Path(engine_file).is_file(): return 0.0, 0.0 # Model and input model = YOLO(engine_file) input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32 # Warmup runs elapsed = 0.0 for _ in range(3): start_time = time.time() for _ in range(self.num_warmup_runs): model(input_data, imgsz=self.imgsz, verbose=False) elapsed = time.time() - start_time # Compute number of runs as higher of min_time or num_timed_runs num_runs = max(round(self.min_time / elapsed * self.num_warmup_runs), self.num_timed_runs * 50) # Timed runs run_times = [] for _ in tqdm(range(num_runs), desc=engine_file): results = model(input_data, imgsz=self.imgsz, verbose=False) run_times.append(results[0].speed['inference']) # Convert to milliseconds run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping return np.mean(run_times), np.std(run_times) def profile_onnx_model(self, onnx_file: str): check_requirements('onnxruntime') import onnxruntime as ort # Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider' sess_options = ort.SessionOptions() sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL sess_options.intra_op_num_threads = 8 # Limit the number of threads sess = ort.InferenceSession(onnx_file, sess_options, providers=['CPUExecutionProvider']) input_tensor = sess.get_inputs()[0] input_type = input_tensor.type # Mapping ONNX datatype to numpy datatype if 'float16' in input_type: input_dtype = np.float16 elif 'float' in input_type: input_dtype = np.float32 elif 'double' in input_type: input_dtype = np.float64 elif 'int64' in input_type: input_dtype = np.int64 elif 'int32' in input_type: input_dtype = np.int32 else: raise ValueError(f'Unsupported ONNX datatype {input_type}') input_data = np.random.rand(*input_tensor.shape).astype(input_dtype) input_name = input_tensor.name output_name = sess.get_outputs()[0].name # Warmup runs elapsed = 0.0 for _ in range(3): start_time = time.time() for _ in range(self.num_warmup_runs): sess.run([output_name], {input_name: input_data}) elapsed = time.time() - start_time # Compute number of runs as higher of min_time or num_timed_runs num_runs = max(round(self.min_time / elapsed * self.num_warmup_runs), self.num_timed_runs) # Timed runs run_times = [] for _ in tqdm(range(num_runs), desc=onnx_file): start_time = time.time() sess.run([output_name], {input_name: input_data}) run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping return np.mean(run_times), np.std(run_times) def generate_table_row(self, model_name, t_onnx, t_engine, model_info): layers, params, gradients, flops = model_info return f'| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± {t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |' def generate_results_dict(self, model_name, t_onnx, t_engine, model_info): layers, params, gradients, flops = model_info return { 'model/name': model_name, 'model/parameters': params, 'model/GFLOPs': round(flops, 3), 'model/speed_ONNX(ms)': round(t_onnx[0], 3), 'model/speed_TensorRT(ms)': round(t_engine[0], 3)} def print_table(self, table_rows): gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'GPU' header = f'| Model | size
(pixels) | mAPval
50-95 | Speed
CPU ONNX
(ms) | Speed
{gpu} TensorRT
(ms) | params
(M) | FLOPs
(B) |' separator = '|-------------|---------------------|--------------------|------------------------------|-----------------------------------|------------------|-----------------|' print(f'\n\n{header}') print(separator) for row in table_rows: print(row) if __name__ == '__main__': # Benchmark all export formats benchmark() # Profiling models on ONNX and TensorRT ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'])