Spaces:
Sleeping
Sleeping
File size: 6,616 Bytes
ef18c97 ba32694 ef18c97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import streamlit as st
import pandas as pd
import yfinance as yf
import base64
import io
import os
from datetime import datetime, timedelta
from PIL import Image
from plotly import graph_objs as go
from datetime import date
st.set_page_config(layout='wide', initial_sidebar_state='expanded')
st.set_option('deprecation.showPyplotGlobalUse', False)
st.title('ML Wall Street')
st.image('images/img.png')
# @st.cache_data
# Функция для получения данных о ценах акций
def get_stock_data():
dow_tickers = ['UNH', 'MSFT', 'GS', 'HD', 'AMGN', 'MCD', 'CAT', 'CRM', 'V', 'BA', 'HON', 'TRV', 'AAPL', 'AXP', 'JPM', 'IBM', 'JNJ', 'WMT', 'PG', 'CVX', 'MRK', 'MMM', 'NKE', 'DIS', 'KO', 'DOW', 'CSCO', 'INTC', 'VZ', 'WBA']
start_date = (datetime.now() - timedelta(days=365)).strftime('%Y-%m-%d')
end_date = datetime.now().strftime('%Y-%m-%d')
dow_data = yf.download(dow_tickers, start=start_date, end=end_date)
return dow_data
data = get_stock_data()
latest_date = data.index[-1].strftime('%Y-%m-%d')
data = data.loc[latest_date, 'Close'].reset_index()
data.columns = ['Ticker', 'Close']
data['Close'] = data['Close'].round(2)
# Добавляем кнопку обновления данных
# if st.button("Обновить данные", type="primary"):
# data = get_stock_data()
# latest_date = data.index[-1].strftime('%Y-%m-%d')
# data = data.loc[latest_date, 'Close'].reset_index()
# data.columns = ['Ticker', 'Close']
# data['Close'] = data['Close'].round(2)
# st.success("Данные успешно обновлены!")
st.markdown(f"<h3 style='text-align: center;'>Цены актуальны на последнюю дату закрытия торгов {latest_date}</h3>", unsafe_allow_html=True)
col3, col1, col2 = st.columns([0.2, 5.3, 1.8])
with col2:
def image_to_base64(img_path, output_size=(64, 64)):
if os.path.exists(img_path):
with Image.open(img_path) as img:
img = img.resize(output_size)
buffered = io.BytesIO()
img.save(buffered, format="PNG")
return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
return ""
if 'Logo' not in data.columns:
output_dir = 'downloaded_logos'
data['Logo'] = data['Ticker'].apply(lambda name: os.path.join(output_dir, f'{name}.png'))
# Convert image paths to Base64
data["Logo"] = data["Logo"].apply(image_to_base64)
image_column = st.column_config.ImageColumn(label="")
ticker_column = st.column_config.TextColumn(label="Ticker 💬", help="📍**Тикеры компаний Индекса Dow Jones**")
price_column = st.column_config.TextColumn(label=f"Close 💬", help="📍**Цена за последний день (в USD)**")
data.reset_index(drop=True, inplace=True)
data.index = data.index + 1
data = data[['Logo', 'Ticker', 'Close']]
st.write('')
st.write('')
st.markdown('**Компании Индекса Dow Jones**')
st.dataframe(data, height=1088, column_config={"Logo": image_column, "Ticker":ticker_column, 'Close':price_column})
with col1:
START = "1920-01-01"
TODAY = date.today().strftime("%Y-%m-%d")
# @st.cache_data
def load_data(ticker):
data = yf.download(ticker, START, TODAY)
data.reset_index(inplace=True)
return data
def plot_raw_data(data, text):
fig = go.Figure()
fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name="Цена закрытия"))
fig.update_layout(title_text=text, xaxis_rangeslider_visible=True)
fig.update_traces(showlegend=True)
st.plotly_chart(fig, use_container_width=True)
data = load_data('^DJI')
last_DJI = data['Close'].iloc[-1]
diff_DJI = data['Close'].iloc[-1] - data['Close'].iloc[-2]
pr_DJI = 100 * diff_DJI / last_DJI
text_DJI = f'🇺🇸 Dow Jones Industrial Average (^DJI) \
<span style="font-size: 1.5em;">{last_DJI:.2f}</span> <span style="font-size: 1em; color: crimson;">{diff_DJI:.2f}</span><span style="font-size: 1em; color: crimson;">({pr_DJI:.2f}%)</span>' \
'<br><span style="font-size: 0.7em; color: grey;">DJI - DJI Real Time Price. Currency in USD</span>'
plot_raw_data(data, text_DJI)
check1 = st.checkbox("Исторические данные Dow Jones Industrial Average")
if check1:
st.write(data)
data_500 = load_data('^GSPC')
last_500 = data_500['Close'].iloc[-1]
diff_500 = data_500['Close'].iloc[-1] - data_500['Close'].iloc[-2]
pr_500 = 100 * diff_500 / last_500
text_500 = f'🇺🇸 S&P 500 (^GSPC) \
<span style="font-size: 1.5em;">{last_500:.2f}</span> <span style="font-size: 1em; color: crimson;">{diff_500:.2f}</span><span style="font-size: 1em; color: crimson;">({pr_500:.2f}%)</span>' \
'<br><span style="font-size: 0.7em; color: grey;">SNP - SNP Real Time Price. Currency in USD</span>'
plot_raw_data(data_500, text_500)
check4 = st.checkbox("S&P 500")
if check4:
st.write(data_500)
data_SSE = load_data('000001.SS')
last_SSE = data_SSE['Close'].iloc[-1]
diff_SSE = data_SSE['Close'].iloc[-1] - data_SSE['Close'].iloc[-2]
pr_SSE = 100 * diff_SSE / last_SSE
text_SSE = f'🇨🇳 SSE Composite Index (000001.SS) \
<span style="font-size: 1.5em;">{last_SSE:.2f}</span> <span style="font-size: 1em; color: crimson;">{diff_SSE:.2f}</span><span style="font-size: 1em; color: crimson;">({pr_SSE:.2f}%)</span>' \
'<br><span style="font-size: 0.7em; color: grey;">Shanghai - Shanghai Delayed Price. Currency in CNY</span>'
plot_raw_data(data_SSE, text_SSE)
check2 = st.checkbox("Исторические данные SSE Composite Index")
if check2:
st.write(data_SSE)
data_IMOEX = load_data('IMOEX.ME')
last_IMOEX = data_IMOEX['Close'].iloc[-1]
diff_IMOEX = data_IMOEX['Close'].iloc[-1] - data_IMOEX['Close'].iloc[-2]
pr_IMOEX = 100 * diff_IMOEX / last_IMOEX
text_IMOEX= f'🇷🇺 MOEX Russia Index (IMOEX.ME) \
<span style="font-size: 1.5em;">{last_IMOEX:.2f}</span> <span style="font-size: 1em; color: crimson;">{diff_IMOEX:.2f}</span><span style="font-size: 1em; color: crimson;">({pr_IMOEX:.2f}%)</span>' \
'<br><span style="font-size: 0.7em; color: grey;">MCX - MCX Real Time Price. Currency in RUB</span>'
plot_raw_data(data_IMOEX, text_IMOEX)
check3 = st.checkbox("Исторические данные MOEX Russia Index")
if check3:
st.write(data_IMOEX)
|