import streamlit as st import pandas as pd import yfinance as yf import base64 import io import os from datetime import datetime, timedelta from PIL import Image from plotly import graph_objs as go from datetime import date st.set_page_config(layout='wide', initial_sidebar_state='expanded') st.set_option('deprecation.showPyplotGlobalUse', False) st.title('ML Wall Street') st.image('images/img.png') # @st.cache_data # Функция для получения данных о ценах акций def get_stock_data(): dow_tickers = ['UNH', 'MSFT', 'GS', 'HD', 'AMGN', 'MCD', 'CAT', 'CRM', 'V', 'BA', 'HON', 'TRV', 'AAPL', 'AXP', 'JPM', 'IBM', 'JNJ', 'WMT', 'PG', 'CVX', 'MRK', 'MMM', 'NKE', 'DIS', 'KO', 'DOW', 'CSCO', 'INTC', 'VZ', 'WBA'] start_date = (datetime.now() - timedelta(days=365)).strftime('%Y-%m-%d') end_date = datetime.now().strftime('%Y-%m-%d') dow_data = yf.download(dow_tickers, start=start_date, end=end_date) return dow_data data = get_stock_data() latest_date = data.index[-1].strftime('%Y-%m-%d') data = data.loc[latest_date, 'Close'].reset_index() data.columns = ['Ticker', 'Close'] data['Close'] = data['Close'].round(2) # Добавляем кнопку обновления данных # if st.button("Обновить данные", type="primary"): # data = get_stock_data() # latest_date = data.index[-1].strftime('%Y-%m-%d') # data = data.loc[latest_date, 'Close'].reset_index() # data.columns = ['Ticker', 'Close'] # data['Close'] = data['Close'].round(2) # st.success("Данные успешно обновлены!") st.markdown(f"

Цены актуальны на последнюю дату закрытия торгов {latest_date}

", unsafe_allow_html=True) col3, col1, col2 = st.columns([0.2, 5.3, 1.8]) with col2: def image_to_base64(img_path, output_size=(64, 64)): if os.path.exists(img_path): with Image.open(img_path) as img: img = img.resize(output_size) buffered = io.BytesIO() img.save(buffered, format="PNG") return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}" return "" if 'Logo' not in data.columns: output_dir = 'downloaded_logos' data['Logo'] = data['Ticker'].apply(lambda name: os.path.join(output_dir, f'{name}.png')) # Convert image paths to Base64 data["Logo"] = data["Logo"].apply(image_to_base64) image_column = st.column_config.ImageColumn(label="") ticker_column = st.column_config.TextColumn(label="Ticker 💬", help="📍**Тикеры компаний Индекса Dow Jones**") price_column = st.column_config.TextColumn(label=f"Close 💬", help="📍**Цена за последний день (в USD)**") data.reset_index(drop=True, inplace=True) data.index = data.index + 1 data = data[['Logo', 'Ticker', 'Close']] st.write('') st.write('') st.markdown('**Компании Индекса Dow Jones**') st.dataframe(data, height=1088, column_config={"Logo": image_column, "Ticker":ticker_column, 'Close':price_column}) with col1: START = "1920-01-01" TODAY = date.today().strftime("%Y-%m-%d") # @st.cache_data def load_data(ticker): data = yf.download(ticker, START, TODAY) data.reset_index(inplace=True) return data def plot_raw_data(data, text): fig = go.Figure() fig.add_trace(go.Scatter(x=data['Date'], y=data['Close'], name="Цена закрытия")) fig.update_layout(title_text=text, xaxis_rangeslider_visible=True) fig.update_traces(showlegend=True) st.plotly_chart(fig, use_container_width=True) data = load_data('^DJI') last_DJI = data['Close'].iloc[-1] diff_DJI = data['Close'].iloc[-1] - data['Close'].iloc[-2] pr_DJI = 100 * diff_DJI / last_DJI text_DJI = f'🇺🇸 Dow Jones Industrial Average (^DJI) \ {last_DJI:.2f} {diff_DJI:.2f}({pr_DJI:.2f}%)' \ '
DJI - DJI Real Time Price. Currency in USD' plot_raw_data(data, text_DJI) check1 = st.checkbox("Исторические данные Dow Jones Industrial Average") if check1: st.write(data) data_500 = load_data('^GSPC') last_500 = data_500['Close'].iloc[-1] diff_500 = data_500['Close'].iloc[-1] - data_500['Close'].iloc[-2] pr_500 = 100 * diff_500 / last_500 text_500 = f'🇺🇸 S&P 500 (^GSPC) \ {last_500:.2f} {diff_500:.2f}({pr_500:.2f}%)' \ '
SNP - SNP Real Time Price. Currency in USD' plot_raw_data(data_500, text_500) check4 = st.checkbox("S&P 500") if check4: st.write(data_500) data_SSE = load_data('000001.SS') last_SSE = data_SSE['Close'].iloc[-1] diff_SSE = data_SSE['Close'].iloc[-1] - data_SSE['Close'].iloc[-2] pr_SSE = 100 * diff_SSE / last_SSE text_SSE = f'🇨🇳 SSE Composite Index (000001.SS) \ {last_SSE:.2f} {diff_SSE:.2f}({pr_SSE:.2f}%)' \ '
Shanghai - Shanghai Delayed Price. Currency in CNY' plot_raw_data(data_SSE, text_SSE) check2 = st.checkbox("Исторические данные SSE Composite Index") if check2: st.write(data_SSE) data_IMOEX = load_data('IMOEX.ME') last_IMOEX = data_IMOEX['Close'].iloc[-1] diff_IMOEX = data_IMOEX['Close'].iloc[-1] - data_IMOEX['Close'].iloc[-2] pr_IMOEX = 100 * diff_IMOEX / last_IMOEX text_IMOEX= f'🇷🇺 MOEX Russia Index (IMOEX.ME) \ {last_IMOEX:.2f} {diff_IMOEX:.2f}({pr_IMOEX:.2f}%)' \ '
MCX - MCX Real Time Price. Currency in RUB' plot_raw_data(data_IMOEX, text_IMOEX) check3 = st.checkbox("Исторические данные MOEX Russia Index") if check3: st.write(data_IMOEX)