File size: 4,070 Bytes
582663d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/Anastasia/ds_bootcamp/.elbrus2/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "from transformers import BertTokenizer, BertModel\n",
    "import torch\n",
    "from sklearn.metrics.pairwise import cosine_similarity\n",
    "import numpy as np\n",
    "import time\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(array([ 5517,  9066, 13361, 11717,   320, 10793, 14201,  9305,  9199,\n",
      "        8294]), array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]))\n",
      "3.533276081085205\n"
     ]
    }
   ],
   "source": [
    "start_time = time.time()\n",
    "\n",
    "\n",
    "# Читаем вектора сериалов\n",
    "embeddings = np.loadtxt('data/embs.txt')\n",
    "# Указываем пути к сохраненным модели и токенизатору\n",
    "model_path = \"model\"\n",
    "tokenizer_path = \"tokenizer\"\n",
    "\n",
    "# Загружаем модель\n",
    "loaded_model = BertModel.from_pretrained(model_path)\n",
    "\n",
    "# Загружаем токенизатор\n",
    "loaded_tokenizer = BertTokenizer.from_pretrained(tokenizer_path)\n",
    "\n",
    "\n",
    "# Векторизуем запрос\n",
    "loaded_model.eval()\n",
    "tokens = loaded_tokenizer('петух закукарекал', return_tensors=\"pt\", padding=True, truncation=True)\n",
    "\n",
    "# Переместите токены на тот же устройство, что и модель\n",
    "tokens = {key: value.to(loaded_model.device) for key, value in tokens.items()}\n",
    "\n",
    "# Передача токенов в модель для получения эмбеддингов\n",
    "with torch.no_grad():\n",
    "    output = loaded_model(**tokens)\n",
    "\n",
    "# Эмбеддинги получаются из последнего скрытого состояния\n",
    "user_embedding = output.last_hidden_state.mean(dim=1).squeeze().cpu().detach().numpy()\n",
    "\n",
    "\n",
    "\n",
    "cosine_similarities = cosine_similarity(embeddings, user_embedding.reshape(1, -1))\n",
    "\n",
    "# Получаем 10 наиболее подходящих строк-индексов в массиве нампай\n",
    "top_10_indices = np.unravel_index(np.argsort(cosine_similarities, axis=None)[-10:], cosine_similarities.shape)\n",
    "print(top_10_indices)\n",
    "end_time = time.time()\n",
    "print(end_time-start_time)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[5517, 9066, 13361, 11717, 320, 10793, 14201, 9305, 9199, 8294]"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "list(top_10_indices[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".elbrus2",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "name": "python",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}