Анастасия
project_streamlit_app
019c64d
import streamlit as st
import numpy as np
import joblib
import time
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
import time
import pandas as pd
import joblib
model_ml = LogisticRegression()
vectorizer = joblib.load("model/tf-idf.pkl")
def preprocess(text):
# Убедитесь, что text - это список
if isinstance(text, str):
text = [text]
# Преобразуйте текст
text = vectorizer.transform(text)
return text
model = model_ml
model = joblib.load("model/logistic_regression_weights.pkl")
def predict(text):
start_time = time.time()
text = preprocess(text)
predicted_label = model.predict(text)
dict = {'Bad': 'Отрицательный', 'Neutral': 'Нейтральный', 'Good': 'Положительный'}
predicted_label_text = dict[predicted_label[0]]
end_time = time.time()
inference_time = end_time - start_time
return f"***{predicted_label_text}***, время предсказания: ***{inference_time:.4f} сек***."