|
|
|
import streamlit as st |
|
from transformers import BartForConditionalGeneration, BartTokenizer |
|
|
|
|
|
model_name = "facebook/bart-large-cnn" |
|
model = BartForConditionalGeneration.from_pretrained(model_name) |
|
tokenizer = BartTokenizer.from_pretrained(model_name) |
|
|
|
|
|
st.title("ANavya Text Summarizer") |
|
|
|
|
|
text_input = st.text_area("Enter Text Here:") |
|
|
|
|
|
def summarize_text(text): |
|
input_ids = tokenizer.encode(text, return_tensors="pt", max_length=1024, truncation=True) |
|
summary_ids = model.generate(input_ids, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) |
|
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
return summary |
|
|
|
|
|
if st.button("Submit", key="ANavya"): |
|
if text_input: |
|
st.subheader("Summary:") |
|
summary = summarize_text(text_input) |
|
st.write(summary) |
|
|
|
|
|
st.sidebar.markdown("Created by [Team Anavya]") |
|
|
|
|