File size: 40,385 Bytes
56bd2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import math
import numpy as np
import pandas as pd
from typing import Tuple, List
from pytorch3d.renderer.lighting import PointLights
from pytorch3d.renderer.mesh.renderer import MeshRenderer
from pytorch3d.renderer.mesh.shader import SoftPhongShader
from pytorch3d.transforms.math import acos_linear_extrapolation
import torch
from pytorch3d.structures import Meshes
from detectron2.structures import BoxMode
from pytorch3d.renderer import TexturesVertex
from pytorch3d.structures.meshes import (
Meshes,
)
from pytorch3d.renderer import (
PerspectiveCameras,
RasterizationSettings,
MeshRasterizer
)
from pytorch3d.renderer import (
PerspectiveCameras,
SoftSilhouetteShader,
RasterizationSettings,
MeshRasterizer
)
from detectron2.data import (
MetadataCatalog,
)
from pytorch3d.transforms import axis_angle_to_matrix
from pytorch3d.renderer import MeshRenderer as MR
UNIT_CUBE = np.array([
[-0.5, -0.5, -0.5],
[ 0.5, -0.5, -0.5],
[ 0.5, 0.5, -0.5],
[-0.5, 0.5, -0.5],
[-0.5, -0.5, 0.5],
[ 0.5, -0.5, 0.5],
[ 0.5, 0.5, 0.5],
[-0.5, 0.5, 0.5]
])
def upto_2Pi(val):
out = val
# constrain between [0, 2pi)
while out >= 2*math.pi: out -= math.pi * 2
while out < 0: out += math.pi * 2
return out
def upto_Pi(val):
out = val
# constrain between [0, pi)
while out >= math.pi: out -= math.pi
while out < 0: out += math.pi
return out
# Calculates rotation matrix to euler angles
# The result is the same as MATLAB except the order
# of the euler angles ( x and z are swapped ).
# adopted from https://www.learnopencv.com/rotation-matrix-to-euler-angles/
def mat2euler(R):
sy = math.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0])
#singular = sy < 1e-6
x = math.atan2(R[2, 1], R[2, 2])
y = math.atan2(-R[2, 0], sy)
z = math.atan2(R[1, 0], R[0, 0])
return np.array([x, y, z])
# Calculates Rotation Matrix given euler angles.
# adopted from https://www.learnopencv.com/rotation-matrix-to-euler-angles/
def euler2mat(euler):
R_x = np.array([[1, 0, 0],
[0, math.cos(euler[0]), -math.sin(euler[0])],
[0, math.sin(euler[0]), math.cos(euler[0])]
])
R_y = np.array([[math.cos(euler[1]), 0, math.sin(euler[1])],
[0, 1, 0],
[-math.sin(euler[1]), 0, math.cos(euler[1])]
])
R_z = np.array([[math.cos(euler[2]), -math.sin(euler[2]), 0],
[math.sin(euler[2]), math.cos(euler[2]), 0],
[0, 0, 1]
])
R = np.dot(R_z, np.dot(R_y, R_x))
return R
def euler2mat_torch(euler):
R_x = torch.stack([
torch.tensor([[1, 0, 0],
[0, torch.cos(angle), -torch.sin(angle)],
[0, torch.sin(angle), torch.cos(angle)]])
for angle in euler[:, 0]
])
R_y = torch.stack([
torch.tensor([[torch.cos(angle), 0, torch.sin(angle)],
[0, 1, 0],
[-torch.sin(angle), 0, torch.cos(angle)]])
for angle in euler[:, 1]
])
R_z = torch.stack([
torch.tensor([[torch.cos(angle), -torch.sin(angle), 0],
[torch.sin(angle), torch.cos(angle), 0],
[0, 0, 1]])
for angle in euler[:, 2]
])
R = torch.matmul(R_z, torch.matmul(R_y, R_x))
# (n x 3 x 3 out tensor)
return R
def to_float_tensor(input):
data_type = type(input)
if data_type != torch.Tensor:
input = torch.tensor(input)
return input.float()
def get_cuboid_verts_faces(box3d=None, R=None):
"""
Computes vertices and faces from a 3D cuboid representation.
Args:
bbox3d (flexible): [[X Y Z W H L]]
R (flexible): [np.array(3x3)]
Returns:
verts: the 3D vertices of the cuboid in camera space
faces: the vertex indices per face
"""
if box3d is None:
box3d = [0, 0, 0, 1, 1, 1]
# make sure types are correct
box3d = to_float_tensor(box3d)
if R is not None:
R = to_float_tensor(R)
squeeze = len(box3d.shape) == 1
if squeeze:
box3d = box3d.unsqueeze(0)
if R is not None:
R = R.unsqueeze(0)
n = len(box3d)
x3d = box3d[:, 0].unsqueeze(1)
y3d = box3d[:, 1].unsqueeze(1)
z3d = box3d[:, 2].unsqueeze(1)
w3d = box3d[:, 3].unsqueeze(1)
h3d = box3d[:, 4].unsqueeze(1)
l3d = box3d[:, 5].unsqueeze(1)
'''
v4_____________________v5
/| /|
/ | / |
/ | / |
/___|_________________/ |
v0| | |v1 |
| | | |
| | | |
| | | |
| |_________________|___|
| / v7 | /v6
| / | /
| / | /
|/_____________________|/
v3 v2
'''
verts = to_float_tensor(torch.zeros([n, 3, 8], device=box3d.device))
# setup X
verts[:, 0, [0, 3, 4, 7]] = -l3d / 2
verts[:, 0, [1, 2, 5, 6]] = l3d / 2
# setup Y
verts[:, 1, [0, 1, 4, 5]] = -h3d / 2
verts[:, 1, [2, 3, 6, 7]] = h3d / 2
# setup Z
verts[:, 2, [0, 1, 2, 3]] = -w3d / 2
verts[:, 2, [4, 5, 6, 7]] = w3d / 2
if R is not None:
# rotate
verts = R @ verts
# translate
verts[:, 0, :] += x3d
verts[:, 1, :] += y3d
verts[:, 2, :] += z3d
verts = verts.transpose(1, 2)
faces = torch.tensor([
[0, 1, 2], # front TR
[2, 3, 0], # front BL
[1, 5, 6], # right TR
[6, 2, 1], # right BL
[4, 0, 3], # left TR
[3, 7, 4], # left BL
[5, 4, 7], # back TR
[7, 6, 5], # back BL
[4, 5, 1], # top TR
[1, 0, 4], # top BL
[3, 2, 6], # bottom TR
[6, 7, 3], # bottom BL
]).float().unsqueeze(0).repeat([n, 1, 1])
if squeeze:
verts = verts.squeeze()
faces = faces.squeeze()
return verts, faces.to(verts.device)
def get_cuboid_verts(K, box3d, R=None, view_R=None, view_T=None):
# make sure types are correct
K = to_float_tensor(K)
box3d = to_float_tensor(box3d)
if R is not None:
R = to_float_tensor(R)
squeeze = len(box3d.shape) == 1
if squeeze:
box3d = box3d.unsqueeze(0)
if R is not None:
R = R.unsqueeze(0)
n = len(box3d)
if len(K.shape) == 2:
K = K.unsqueeze(0).repeat([n, 1, 1])
corners_3d, _ = get_cuboid_verts_faces(box3d, R)
if view_T is not None:
corners_3d -= view_T.view(1, 1, 3)
if view_R is not None:
corners_3d = (view_R @ corners_3d[0].T).T.unsqueeze(0)
if view_T is not None:
corners_3d[:, :, -1] += view_T.view(1, 1, 3)[:, :, -1]*1.25
# project to 2D
corners_2d = K @ corners_3d.transpose(1, 2)
corners_2d[:, :2, :] = corners_2d[:, :2, :] / corners_2d[:, 2, :].unsqueeze(1)
corners_2d = corners_2d.transpose(1, 2)
if squeeze:
corners_3d = corners_3d.squeeze()
corners_2d = corners_2d.squeeze()
return corners_2d, corners_3d
def approx_eval_resolution(h, w, scale_min=0, scale_max=1e10):
"""
Approximates the resolution an image with h x w resolution would
run through a model at which constrains the scale to a min and max.
Args:
h (int): input resolution height
w (int): input resolution width
scale_min (int): minimum scale allowed to resize too
scale_max (int): maximum scale allowed to resize too
Returns:
h (int): output resolution height
w (int): output resolution width
sf (float): scaling factor that was applied
which can convert from original --> network resolution.
"""
orig_h = h
# first resize to min
sf = scale_min / min(h, w)
h *= sf
w *= sf
# next resize to max
sf = min(scale_max / max(h, w), 1.0)
h *= sf
w *= sf
return h, w, h/orig_h
def compute_priors(cfg, datasets, max_cluster_rounds=1000, min_points_for_std=5, n_bins=None):
"""
Computes priors via simple averaging or a custom K-Means clustering.
"""
annIds = datasets.getAnnIds()
anns = datasets.loadAnns(annIds)
data_raw = []
category_names = MetadataCatalog.get('omni3d_model').thing_classes
virtual_depth = cfg.MODEL.ROI_CUBE_HEAD.VIRTUAL_DEPTH
virtual_focal = cfg.MODEL.ROI_CUBE_HEAD.VIRTUAL_FOCAL
test_scale_min = cfg.INPUT.MIN_SIZE_TEST
test_scale_max = cfg.INPUT.MAX_SIZE_TEST
'''
Accumulate the annotations while discarding the 2D center information
(hence, keeping only the 2D and 3D scale information, and properties.)
'''
for ann_idx, ann in enumerate(anns):
category_name = ann['category_name'].lower()
ignore = ann['ignore']
dataset_id = ann['dataset_id']
image_id = ann['image_id']
fy = datasets.imgs[image_id]['K'][1][1]
im_h = datasets.imgs[image_id]['height']
im_w = datasets.imgs[image_id]['width']
f = 2 * fy / im_h
if cfg.DATASETS.MODAL_2D_BOXES and 'bbox2D_tight' in ann and ann['bbox2D_tight'][0] != -1:
x, y, w, h = BoxMode.convert(ann['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif cfg.DATASETS.TRUNC_2D_BOXES and 'bbox2D_trunc' in ann and not np.all([val==-1 for val in ann['bbox2D_trunc']]):
x, y, w, h = BoxMode.convert(ann['bbox2D_trunc'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif 'bbox2D_proj' in ann:
x, y, w, h = BoxMode.convert(ann['bbox2D_proj'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
else:
continue
x3d, y3d, z3d = ann['center_cam']
w3d, h3d, l3d = ann['dimensions']
test_h, test_w, sf = approx_eval_resolution(im_h, im_w, test_scale_min, test_scale_max)
# scale everything to test resolution
h *= sf
w *= sf
if virtual_depth:
virtual_to_real = compute_virtual_scale_from_focal_spaces(fy, im_h, virtual_focal, test_h)
real_to_virtual = 1/virtual_to_real
z3d *= real_to_virtual
scale = np.sqrt(h**2 + w**2)
if (not ignore) and category_name in category_names:
data_raw.append([category_name, w, h, x3d, y3d, z3d, w3d, h3d, l3d, w3d*h3d*l3d, dataset_id, image_id, fy, f, scale])
# TODO pandas is fairly inefficient to rely on for large scale.
df_raw = pd.DataFrame(data_raw, columns=[
'name',
'w', 'h', 'x3d', 'y3d', 'z3d',
'w3d', 'h3d', 'l3d', 'volume',
'dataset', 'image',
'fy', 'f', 'scale'
])
# ^ the elements ending in w/h/l3d are the actual sizes, while the x/y/z3d are the camera perspective sizes.
priors_bins = []
priors_dims_per_cat = []
priors_z3d_per_cat = []
priors_y3d_per_cat = []
# compute priors for z and y globally
priors_z3d = [df_raw.z3d.mean(), df_raw.z3d.std()]
priors_y3d = [df_raw.y3d.mean(), df_raw.y3d.std()]
if n_bins is None:
n_bins = cfg.MODEL.ROI_CUBE_HEAD.CLUSTER_BINS
# Each prior is pre-computed per category
for cat in category_names:
df_cat = df_raw[df_raw.name == cat]
'''
First compute static variable statistics
'''
scales = torch.FloatTensor(np.array(df_cat.scale))
n = len(scales)
if n > 0:
priors_dims_per_cat.append([[df_cat.w3d.mean(), df_cat.h3d.mean(), df_cat.l3d.mean()], [df_cat.w3d.std(), df_cat.h3d.std(), df_cat.l3d.std()]])
priors_z3d_per_cat.append([df_cat.z3d.mean(), df_cat.z3d.std()])
priors_y3d_per_cat.append([df_cat.y3d.mean(), df_cat.y3d.std()])
else:
# dummy data.
priors_dims_per_cat.append([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]])
priors_z3d_per_cat.append([50, 50])
priors_y3d_per_cat.append([1, 10])
'''
Next compute Z cluster statistics based on y and area
'''
def compute_cluster_scale_mean(scales, assignments, n_bins, match_quality):
cluster_scales = []
for bin in range(n_bins):
in_cluster = assignments==bin
if in_cluster.sum() < min_points_for_std:
in_cluster[match_quality[:, bin].topk(min_points_for_std)[1]] = True
scale = scales[in_cluster].mean()
cluster_scales.append(scale.item())
return torch.FloatTensor(cluster_scales)
if n_bins > 1:
if n < min_points_for_std:
print('Warning {} category has only {} valid samples...'.format(cat, n))
# dummy data since category doesn't have available samples.
max_scale = cfg.MODEL.ANCHOR_GENERATOR.SIZES[-1][-1]
min_scale = cfg.MODEL.ANCHOR_GENERATOR.SIZES[0][0]
base = (max_scale / min_scale) ** (1 / (n_bins - 1))
cluster_scales = np.array([min_scale * (base ** i) for i in range(0, n_bins)])
# default values are unused anyways in training. but range linearly
# from 100 to 1 and ascend with 2D scale.
bin_priors_z = [[b, 15] for b in np.arange(100, 1, -(100-1)/n_bins)]
priors_bins.append((cat, cluster_scales.tolist(), bin_priors_z))
assert len(bin_priors_z) == n_bins, 'Broken default bin scaling.'
else:
max_scale = scales.max()
min_scale = scales.min()
base = (max_scale / min_scale) ** (1 / (n_bins - 1))
cluster_scales = torch.FloatTensor([min_scale * (base ** i) for i in range(0, n_bins)])
best_score = -np.inf
for round in range(max_cluster_rounds):
# quality scores for gts and clusters (n x n_bins)
match_quality = -(cluster_scales.unsqueeze(0) - scales.unsqueeze(1)).abs()
# assign to best clusters
scores, assignments_round = match_quality.max(1)
round_score = scores.mean().item()
if np.round(round_score, 5) > best_score:
best_score = round_score
assignments = assignments_round
# make new clusters
cluster_scales = compute_cluster_scale_mean(scales, assignments, n_bins, match_quality)
else:
break
bin_priors_z = []
for bin in range(n_bins):
in_cluster = assignments == bin
# not enough in the cluster to compute reliable stats?
# fill it with the topk others
if in_cluster.sum() < min_points_for_std:
in_cluster[match_quality[:, bin].topk(min_points_for_std)[1]] = True
# move to numpy for indexing pandas
in_cluster = in_cluster.numpy()
z3d_mean = df_cat.z3d[in_cluster].mean()
z3d_std = df_cat.z3d[in_cluster].std()
bin_priors_z.append([z3d_mean, z3d_std])
priors_bins.append((cat, cluster_scales.numpy().tolist(), bin_priors_z))
priors = {
'priors_dims_per_cat': priors_dims_per_cat,
'priors_z3d_per_cat': priors_z3d_per_cat,
'priors_y3d_per_cat': priors_y3d_per_cat,
'priors_bins': priors_bins,
'priors_y3d': priors_y3d,
'priors_z3d': priors_z3d,
}
return priors
def compute_priors_custom(cfg, datasets, max_cluster_rounds=1000, min_points_for_std=5):
"""
simplification of the standard compute_priors function
Computes priors via simple averaging
"""
annIds = datasets.getAnnIds()
anns = datasets.loadAnns(annIds)
data_raw = []
category_names = MetadataCatalog.get('omni3d_model').thing_classes
virtual_depth = cfg.MODEL.ROI_CUBE_HEAD.VIRTUAL_DEPTH
virtual_focal = cfg.MODEL.ROI_CUBE_HEAD.VIRTUAL_FOCAL
test_scale_min = cfg.INPUT.MIN_SIZE_TEST
test_scale_max = cfg.INPUT.MAX_SIZE_TEST
'''
Accumulate the annotations while discarding the 2D center information
(hence, keeping only the 2D and 3D scale information, and properties.)
'''
for ann_idx, ann in enumerate(anns):
category_name = ann['category_name'].lower()
ignore = ann['ignore']
dataset_id = ann['dataset_id']
image_id = ann['image_id']
fy = datasets.imgs[image_id]['K'][1][1]
im_h = datasets.imgs[image_id]['height']
im_w = datasets.imgs[image_id]['width']
f = 2 * fy / im_h
if cfg.DATASETS.MODAL_2D_BOXES and 'bbox2D_tight' in ann and ann['bbox2D_tight'][0] != -1:
x, y, w, h = BoxMode.convert(ann['bbox2D_tight'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif cfg.DATASETS.TRUNC_2D_BOXES and 'bbox2D_trunc' in ann and not np.all([val==-1 for val in ann['bbox2D_trunc']]):
x, y, w, h = BoxMode.convert(ann['bbox2D_trunc'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
elif 'bbox2D_proj' in ann:
x, y, w, h = BoxMode.convert(ann['bbox2D_proj'], BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
else:
continue
x3d, y3d, z3d = ann['center_cam']
w3d, h3d, l3d = ann['dimensions']
test_h, test_w, sf = approx_eval_resolution(im_h, im_w, test_scale_min, test_scale_max)
# scale everything to test resolution
h *= sf
w *= sf
if virtual_depth:
virtual_to_real = compute_virtual_scale_from_focal_spaces(fy, im_h, virtual_focal, test_h)
real_to_virtual = 1/virtual_to_real
z3d *= real_to_virtual
scale = np.sqrt(h**2 + w**2)
if (not ignore) and category_name in category_names:
data_raw.append([category_name, w, h, x3d, y3d, z3d, w3d, h3d, l3d, w3d*h3d*l3d, dataset_id, image_id, fy, f, scale])
# TODO pandas is fairly inefficient to rely on for large scale.
df_raw = pd.DataFrame(data_raw, columns=[
'name',
'w', 'h', 'x3d', 'y3d', 'z3d',
'w3d', 'h3d', 'l3d', 'volume',
'dataset', 'image',
'fy', 'f', 'scale'
])
# ^ the elements ending in w/h/l3d are the actual sizes, while the x/y/z3d are the camera perspective sizes.
priors_bins = []
priors_dims_per_cat = []
priors_z3d_per_cat = []
priors_y3d_per_cat = []
# compute priors for z and y globally
priors_z3d = [df_raw.z3d.mean(), df_raw.z3d.std()]
priors_y3d = [df_raw.y3d.mean(), df_raw.y3d.std()]
# Each prior is pre-computed per category
for cat in category_names:
df_cat = df_raw[df_raw.name == cat]
'''
First compute static variable statistics
'''
scales = torch.FloatTensor(np.array(df_cat.scale))
n = len(scales)
if None:
priors_dims_per_cat.append([[df_cat.w3d.mean(), df_cat.h3d.mean(), df_cat.l3d.mean()], [df_cat.w3d.std(), df_cat.h3d.std(), df_cat.l3d.std()]])
priors_z3d_per_cat.append([df_cat.z3d.mean(), df_cat.z3d.std()])
priors_y3d_per_cat.append([df_cat.y3d.mean(), df_cat.y3d.std()])
else:
# dummy data.
priors_dims_per_cat.append([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
priors_z3d_per_cat.append([0, 0])
priors_y3d_per_cat.append([0, 0])
priors = {
'priors_dims_per_cat': priors_dims_per_cat,
'priors_z3d_per_cat': priors_z3d_per_cat,
'priors_y3d_per_cat': priors_y3d_per_cat,
'priors_bins': priors_bins,
'priors_y3d': priors_y3d,
'priors_z3d': priors_z3d,
}
return priors
def convert_3d_box_to_2d(K, box3d, R=None, clipw=0, cliph=0, XYWH=True, min_z=0.20):
"""
Converts a 3D box to a 2D box via projection.
Args:
K (np.array): intrinsics matrix 3x3
bbox3d (flexible): [[X Y Z W H L]]
R (flexible): [np.array(3x3)]
clipw (int): clip invalid X to the image bounds. Image width is usually used here.
cliph (int): clip invalid Y to the image bounds. Image height is usually used here.
XYWH (bool): returns in XYWH if true, otherwise XYXY format.
min_z: the threshold for how close a vertex is allowed to be before being
considered as invalid for projection purposes.
Returns:
box2d (flexible): the 2D box results.
behind_camera (bool): whether the projection has any points behind the camera plane.
fully_behind (bool): all points are behind the camera plane.
"""
# bounds used for vertices behind image plane
topL_bound = torch.tensor([[0, 0, 0]]).float()
topR_bound = torch.tensor([[clipw-1, 0, 0]]).float()
botL_bound = torch.tensor([[0, cliph-1, 0]]).float()
botR_bound = torch.tensor([[clipw-1, cliph-1, 0]]).float()
# make sure types are correct
K = to_float_tensor(K)
box3d = to_float_tensor(box3d)
if R is not None:
R = to_float_tensor(R)
squeeze = len(box3d.shape) == 1
if squeeze:
box3d = box3d.unsqueeze(0)
if R is not None:
R = R.unsqueeze(0)
n = len(box3d)
verts2d, verts3d = get_cuboid_verts(K, box3d, R)
# any boxes behind camera plane?
verts_behind = verts2d[:, :, 2] <= min_z
behind_camera = verts_behind.any(1)
verts_signs = torch.sign(verts3d)
# check for any boxes projected behind image plane corners
topL = verts_behind & (verts_signs[:, :, 0] < 0) & (verts_signs[:, :, 1] < 0)
topR = verts_behind & (verts_signs[:, :, 0] > 0) & (verts_signs[:, :, 1] < 0)
botL = verts_behind & (verts_signs[:, :, 0] < 0) & (verts_signs[:, :, 1] > 0)
botR = verts_behind & (verts_signs[:, :, 0] > 0) & (verts_signs[:, :, 1] > 0)
# clip values to be in bounds for invalid points
verts2d[topL] = topL_bound
verts2d[topR] = topR_bound
verts2d[botL] = botL_bound
verts2d[botR] = botR_bound
x, xi = verts2d[:, :, 0].min(1)
y, yi = verts2d[:, :, 1].min(1)
x2, x2i = verts2d[:, :, 0].max(1)
y2, y2i = verts2d[:, :, 1].max(1)
fully_behind = verts_behind.all(1)
width = x2 - x
height = y2 - y
if XYWH:
box2d = torch.cat((x.unsqueeze(1), y.unsqueeze(1), width.unsqueeze(1), height.unsqueeze(1)), dim=1)
else:
box2d = torch.cat((x.unsqueeze(1), y.unsqueeze(1), x2.unsqueeze(1), y2.unsqueeze(1)), dim=1)
if squeeze:
box2d = box2d.squeeze()
behind_camera = behind_camera.squeeze()
fully_behind = fully_behind.squeeze()
return box2d, behind_camera, fully_behind
#
def compute_virtual_scale_from_focal_spaces(f, H, f0, H0):
"""
Computes the scaling factor of depth from f0, H0 to f, H
Args:
f (float): the desired [virtual] focal length (px)
H (float): the desired [virtual] height (px)
f0 (float): the initial [real] focal length (px)
H0 (float): the initial [real] height (px)
Returns:
the scaling factor float to convert form (f0, H0) --> (f, H)
"""
return (H0 * f) / (f0 * H)
def R_to_allocentric(K, R, u=None, v=None):
"""
Convert a rotation matrix or series of rotation matrices to allocentric
representation given a 2D location (u, v) in pixels.
When u or v are not available, we fall back on the principal point of K.
"""
if type(K) == torch.Tensor:
fx = K[:, 0, 0]
fy = K[:, 1, 1]
sx = K[:, 0, 2]
sy = K[:, 1, 2]
n = len(K)
oray = torch.stack(((u - sx)/fx, (v - sy)/fy, torch.ones_like(u))).T
oray = oray / torch.linalg.norm(oray, dim=1).unsqueeze(1)
angle = torch.acos(oray[:, -1])
axis = torch.zeros_like(oray)
axis[:, 0] = axis[:, 0] - oray[:, 1]
axis[:, 1] = axis[:, 1] + oray[:, 0]
norms = torch.linalg.norm(axis, dim=1)
valid_angle = angle > 0
M = axis_angle_to_matrix(angle.unsqueeze(1)*axis/norms.unsqueeze(1))
R_view = R.clone()
R_view[valid_angle] = torch.bmm(M[valid_angle].transpose(2, 1), R[valid_angle])
else:
fx = K[0][0]
fy = K[1][1]
sx = K[0][2]
sy = K[1][2]
if u is None:
u = sx
if v is None:
v = sy
oray = np.array([(u - sx)/fx, (v - sy)/fy, 1])
oray = oray / np.linalg.norm(oray)
cray = np.array([0, 0, 1])
angle = math.acos(cray.dot(oray))
if angle != 0:
axis = np.cross(cray, oray)
axis_torch = torch.from_numpy(angle*axis/np.linalg.norm(axis)).float()
R_view = np.dot(axis_angle_to_matrix(axis_torch).numpy().T, R)
else:
R_view = R
return R_view
def R_from_allocentric(K, R_view, u=None, v=None):
"""
Convert a rotation matrix or series of rotation matrices to egocentric
representation given a 2D location (u, v) in pixels.
When u or v are not available, we fall back on the principal point of K.
"""
if type(K) == torch.Tensor:
fx = K[:, 0, 0]
fy = K[:, 1, 1]
sx = K[:, 0, 2]
sy = K[:, 1, 2]
n = len(K)
oray = torch.stack(((u - sx)/fx, (v - sy)/fy, torch.ones_like(u))).T
oray = oray / torch.linalg.norm(oray, dim=1).unsqueeze(1)
angle = torch.acos(oray[:, -1])
axis = torch.zeros_like(oray)
axis[:, 0] = axis[:, 0] - oray[:, 1]
axis[:, 1] = axis[:, 1] + oray[:, 0]
norms = torch.linalg.norm(axis, dim=1)
valid_angle = angle > 0
M = axis_angle_to_matrix(angle.unsqueeze(1)*axis/norms.unsqueeze(1))
R = R_view.clone()
R[valid_angle] = torch.bmm(M[valid_angle], R_view[valid_angle])
else:
fx = K[0][0]
fy = K[1][1]
sx = K[0][2]
sy = K[1][2]
if u is None:
u = sx
if v is None:
v = sy
oray = np.array([(u - sx)/fx, (v - sy)/fy, 1])
oray = oray / np.linalg.norm(oray)
cray = np.array([0, 0, 1])
angle = math.acos(cray.dot(oray))
if angle != 0:
#axis = np.cross(cray, oray)
axis = np.array([-oray[1], oray[0], 0])
axis_torch = torch.from_numpy(angle*axis/np.linalg.norm(axis)).float()
R = np.dot(axis_angle_to_matrix(axis_torch).numpy(), R_view)
else:
R = R_view
return R
def render_depth_map(K, box3d, pose, width, height, device=None):
cameras = get_camera(K, width, height)
renderer = get_basic_renderer(cameras, width, height)
mesh = mesh_cuboid(box3d, pose)
if device is not None:
cameras = cameras.to(device)
renderer = renderer.to(device)
mesh = mesh.to(device)
im_rendered, fragment = renderer(mesh)
silhouettes = im_rendered[:, :, :, -1] > 0
zbuf = fragment.zbuf[:, :, :, 0]
zbuf[zbuf==-1] = math.inf
depth_map, depth_map_inds = zbuf.min(dim=0)
return silhouettes, depth_map, depth_map_inds
def estimate_visibility(K, box3d, pose, width, height, device=None):
silhouettes, depth_map, depth_map_inds = render_depth_map(K, box3d, pose, width, height, device=device)
n = silhouettes.shape[0]
visibilies = []
for annidx in range(n):
area = silhouettes[annidx].sum()
visible = (depth_map_inds[silhouettes[annidx]] == annidx).sum()
visibilies.append((visible / area).item())
return visibilies
def estimate_truncation(K, box3d, R, imW, imH):
box2d, out_of_bounds, fully_behind = convert_3d_box_to_2d(K, box3d, R, imW, imH)
if fully_behind:
return 1.0
box2d = box2d.detach().cpu().numpy().tolist()
box2d_XYXY = BoxMode.convert(box2d, BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
image_box = np.array([0, 0, imW-1, imH-1])
truncation = 1 - iou(np.array(box2d_XYXY)[np.newaxis], image_box[np.newaxis], ign_area_b=True)
return truncation.item()
def mesh_cuboid(box3d=None, R=None, color=None):
verts, faces = get_cuboid_verts_faces(box3d, R)
if verts.ndim == 2:
verts = to_float_tensor(verts).unsqueeze(0)
faces = to_float_tensor(faces).unsqueeze(0)
ninstances = len(verts)
if (isinstance(color, Tuple) or isinstance(color, List)) and len(color) == 3:
color = torch.tensor(color).view(1, 1, 3).expand(ninstances, 8, 3).float()
# pass in a tensor of colors per box
elif color.ndim == 2:
color = to_float_tensor(color).unsqueeze(1).expand(ninstances, 8, 3).float()
device = verts.device
mesh = Meshes(verts=verts, faces=faces, textures=None if color is None else TexturesVertex(verts_features=color).to(device))
return mesh
def get_camera(K, width, height, switch_hands=True, R=None, T=None):
K = to_float_tensor(K)
if switch_hands:
K = K @ torch.tensor([
[-1, 0, 0],
[0, -1, 0],
[0, 0, 1]
]).float()
fx = K[0, 0]
fy = K[1, 1]
px = K[0, 2]
py = K[1, 2]
if R is None:
camera = PerspectiveCameras(
focal_length=((fx, fy),), principal_point=((px, py),),
image_size=((height, width),), in_ndc=False
)
else:
camera = PerspectiveCameras(
focal_length=((fx, fy),), principal_point=((px, py),),
image_size=((height, width),), in_ndc=False, R=R, T=T
)
return camera
def get_basic_renderer(cameras, width, height, use_color=False):
raster_settings = RasterizationSettings(
image_size=(height, width),
blur_radius=0 if use_color else np.log(1. / 1e-4 - 1.) * 1e-4,
faces_per_pixel=1,
perspective_correct=False,
)
if use_color:
# SoftPhongShader, HardPhongShader, HardFlatShader, SoftGouraudShader
lights = PointLights(location=[[0.0, 0.0, 0.0]])
shader = SoftPhongShader(cameras=cameras, lights=lights)
else:
shader = SoftSilhouetteShader()
renderer = MeshRenderer(
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings,
),
shader=shader
)
return renderer
class MeshRenderer(MR):
def __init__(self, rasterizer, shader):
super().__init__(rasterizer, shader)
def forward(self, meshes_world, **kwargs) -> torch.Tensor:
fragments = self.rasterizer(meshes_world, **kwargs)
images = self.shader(fragments, meshes_world, **kwargs)
return images, fragments
def iou(box_a, box_b, mode='cross', ign_area_b=False):
"""
Computes the amount of Intersection over Union (IoU) between two different sets of boxes.
Args:
box_a (array or tensor): Mx4 boxes, defined by [x1, y1, x2, y2]
box_a (array or tensor): Nx4 boxes, defined by [x1, y1, x2, y2]
mode (str): either 'cross' or 'list', where cross will check all combinations of box_a and
box_b hence MxN array, and list expects the same size list M == N, hence returns Mx1 array.
ign_area_b (bool): if true then we ignore area of b. e.g., checking % box a is inside b
"""
data_type = type(box_a)
# this mode computes the IoU in the sense of cross.
# i.e., box_a = M x 4, box_b = N x 4 then the output is M x N
if mode == 'cross':
inter = intersect(box_a, box_b, mode=mode)
area_a = ((box_a[:, 2] - box_a[:, 0]) *
(box_a[:, 3] - box_a[:, 1]))
area_b = ((box_b[:, 2] - box_b[:, 0]) *
(box_b[:, 3] - box_b[:, 1]))
# torch.Tensor
if data_type == torch.Tensor:
union = area_a.unsqueeze(0)
if not ign_area_b:
union = union + area_b.unsqueeze(1) - inter
return (inter / union).permute(1, 0)
# np.ndarray
elif data_type == np.ndarray:
union = np.expand_dims(area_a, 0)
if not ign_area_b:
union = union + np.expand_dims(area_b, 1) - inter
return (inter / union).T
# unknown type
else:
raise ValueError('unknown data type {}'.format(data_type))
# this mode compares every box in box_a with target in box_b
# i.e., box_a = M x 4 and box_b = M x 4 then output is M x 1
elif mode == 'list':
inter = intersect(box_a, box_b, mode=mode)
area_a = (box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])
area_b = (box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])
union = area_a + area_b - inter
return inter / union
else:
raise ValueError('unknown mode {}'.format(mode))
def intersect(box_a, box_b, mode='cross'):
"""
Computes the amount of intersect between two different sets of boxes.
Args:
box_a (nparray): Mx4 boxes, defined by [x1, y1, x2, y2]
box_a (nparray): Nx4 boxes, defined by [x1, y1, x2, y2]
mode (str): either 'cross' or 'list', where cross will check all combinations of box_a and
box_b hence MxN array, and list expects the same size list M == N, hence returns Mx1 array.
data_type (type): either torch.Tensor or np.ndarray, we automatically determine otherwise
"""
# determine type
data_type = type(box_a)
# this mode computes the intersect in the sense of cross.
# i.e., box_a = M x 4, box_b = N x 4 then the output is M x N
if mode == 'cross':
# np.ndarray
if data_type == np.ndarray:
max_xy = np.minimum(box_a[:, 2:4], np.expand_dims(box_b[:, 2:4], axis=1))
min_xy = np.maximum(box_a[:, 0:2], np.expand_dims(box_b[:, 0:2], axis=1))
inter = np.clip((max_xy - min_xy), a_min=0, a_max=None)
elif data_type == torch.Tensor:
max_xy = torch.min(box_a[:, 2:4], box_b[:, 2:4].unsqueeze(1))
min_xy = torch.max(box_a[:, 0:2], box_b[:, 0:2].unsqueeze(1))
inter = torch.clamp((max_xy - min_xy), 0)
# unknown type
else:
raise ValueError('type {} is not implemented'.format(data_type))
return inter[:, :, 0] * inter[:, :, 1]
# this mode computes the intersect in the sense of list_a vs. list_b.
# i.e., box_a = M x 4, box_b = M x 4 then the output is Mx1
elif mode == 'list':
# torch.Tesnor
if data_type == torch.Tensor:
max_xy = torch.min(box_a[:, 2:], box_b[:, 2:])
min_xy = torch.max(box_a[:, :2], box_b[:, :2])
inter = torch.clamp((max_xy - min_xy), 0)
# np.ndarray
elif data_type == np.ndarray:
max_xy = np.min(box_a[:, 2:], box_b[:, 2:])
min_xy = np.max(box_a[:, :2], box_b[:, :2])
inter = np.clip((max_xy - min_xy), a_min=0, a_max=None)
# unknown type
else:
raise ValueError('unknown data type {}'.format(data_type))
return inter[:, 0] * inter[:, 1]
else:
raise ValueError('unknown mode {}'.format(mode))
def scaled_sigmoid(vals, min=0.0, max=1.0):
"""
Simple helper function for a scaled sigmoid.
The output is bounded by (min, max)
Args:
vals (Tensor): input logits to scale
min (Tensor or float): the minimum value to scale to.
max (Tensor or float): the maximum value to scale to.
"""
return min + (max-min)*torch.sigmoid(vals)
def so3_relative_angle_batched(
R: torch.Tensor,
cos_angle: bool = False,
cos_bound: float = 1e-4,
eps: float = 1e-4,
) -> torch.Tensor:
"""
Calculates the relative angle (in radians) between pairs of
rotation matrices `R1` and `R2` with `angle = acos(0.5 * (Trace(R1 R2^T)-1))`
.. note::
This corresponds to a geodesic distance on the 3D manifold of rotation
matrices.
Args:
R1: Batch of rotation matrices of shape `(minibatch, 3, 3)`.
R2: Batch of rotation matrices of shape `(minibatch, 3, 3)`.
cos_angle: If==True return cosine of the relative angle rather than
the angle itself. This can avoid the unstable calculation of `acos`.
cos_bound: Clamps the cosine of the relative rotation angle to
[-1 + cos_bound, 1 - cos_bound] to avoid non-finite outputs/gradients
of the `acos` call. Note that the non-finite outputs/gradients
are returned when the angle is requested (i.e. `cos_angle==False`)
and the rotation angle is close to 0 or π.
eps: Tolerance for the valid trace check of the relative rotation matrix
in `so3_rotation_angle`.
Returns:
Corresponding rotation angles of shape `(minibatch,)`.
If `cos_angle==True`, returns the cosine of the angles.
Raises:
ValueError if `R1` or `R2` is of incorrect shape.
ValueError if `R1` or `R2` has an unexpected trace.
"""
N = R.shape[0]
n_pairs = N * (N - 1) // 2
Rleft = torch.zeros((n_pairs, 3, 3))
Rright = torch.zeros((n_pairs, 3, 3))
global_idx = 0
for i in range(1, N):
for j in range(i):
p1 = R[i]
p2 = R[j]
Rleft[global_idx] = p1
Rright[global_idx] = p2
global_idx += 1
# gather up the pairs
R12 = torch.matmul(Rleft, Rright.permute(0, 2, 1))
return so3_rotation_angle(R12, cos_angle=cos_angle, cos_bound=cos_bound, eps=eps)
def so3_rotation_angle(
R: torch.Tensor,
eps: float = 1e-4,
cos_angle: bool = False,
cos_bound: float = 1e-4,
) -> torch.Tensor:
"""
Calculates angles (in radians) of a batch of rotation matrices `R` with
`angle = acos(0.5 * (Trace(R)-1))`. The trace of the
input matrices is checked to be in the valid range `[-1-eps,3+eps]`.
The `eps` argument is a small constant that allows for small errors
caused by limited machine precision.
Args:
R: Batch of rotation matrices of shape `(minibatch, 3, 3)`.
eps: Tolerance for the valid trace check.
cos_angle: If==True return cosine of the rotation angles rather than
the angle itself. This can avoid the unstable
calculation of `acos`.
cos_bound: Clamps the cosine of the rotation angle to
[-1 + cos_bound, 1 - cos_bound] to avoid non-finite outputs/gradients
of the `acos` call. Note that the non-finite outputs/gradients
are returned when the angle is requested (i.e. `cos_angle==False`)
and the rotation angle is close to 0 or π.
Returns:
Corresponding rotation angles of shape `(minibatch,)`.
If `cos_angle==True`, returns the cosine of the angles.
Raises:
ValueError if `R` is of incorrect shape.
ValueError if `R` has an unexpected trace.
"""
N, dim1, dim2 = R.shape
if dim1 != 3 or dim2 != 3:
raise ValueError("Input has to be a batch of 3x3 Tensors.")
rot_trace = R[:, 0, 0] + R[:, 1, 1] + R[:, 2, 2]
if ((rot_trace < -1.0 - eps) + (rot_trace > 3.0 + eps)).any():
raise ValueError("A matrix has trace outside valid range [-1-eps,3+eps].")
# phi ... rotation angle
phi_cos = (rot_trace - 1.0) * 0.5
if cos_angle:
return phi_cos
else:
if cos_bound > 0.0:
bound = 1.0 - cos_bound
return acos_linear_extrapolation(phi_cos, (-bound, bound))
else:
return torch.acos(phi_cos) |